tensorflow

How to configure dataset pipelines with Tensorflow make_csv_dataset for Keras Model

天涯浪子 提交于 2020-12-04 05:12:45
问题 I have a structured dataset(csv features files) of around 200 GB. I'm using make_csv_dataset to make the input pipelines. Here is my code def pack_features_vector(features, labels): """Pack the features into a single array.""" features = tf.stack(list(features.values()), axis=1) return features, labels def main(): defaults=[float()]*len(selected_columns) data_set=tf.data.experimental.make_csv_dataset( file_pattern = "./../path-to-dataset/Train_DS/*/*.csv", column_names=all_columns, # all

浏览器人体检测

一世执手 提交于 2020-12-02 07:40:37
Pose Animator:使用实时TensorFlow.js模型的SVG动画工具 下面的在手机上延时超过1秒 新的演示版 https://storage.googleapis.com/tfjs-models/demos/body-pix/index.html GitHub https://github.com/tensorflow/tfjs-models/tree/master/body-pix https://mp.weixin.qq.com/s?__biz=MzU1OTMyNDcxMQ==&mid=2247491846&idx=1&sn=0264cbf70e96414ec73d5668b7e8269f&chksm=fc1baa4ecb6c23586f796b64519cbc360339cfc621d200e61477990a9e7edc6cf2debb933f0e&mpshare=1&scene=1&srcid=1201U0paIzR1R6d4qw8hUKkj&sharer_sharetime=1606828485902&sharer_shareid=ab5aa3530015c5ae813227bf34b4fc84&key

Why Bert transformer uses [CLS] token for classification instead of average over all tokens?

强颜欢笑 提交于 2020-12-01 12:00:50
问题 I am doing experiments on bert architecture and found out that most of the fine-tuning task takes the final hidden layer as text representation and later they pass it to other models for the further downstream task. Bert's last layer looks like this : Where we take the [CLS] token of each sentence : Image source I went through many discussion on this huggingface issue, datascience forum question, github issue Most of the data scientist gives this explanation : BERT is bidirectional, the [CLS]

Why Bert transformer uses [CLS] token for classification instead of average over all tokens?

旧巷老猫 提交于 2020-12-01 12:00:35
问题 I am doing experiments on bert architecture and found out that most of the fine-tuning task takes the final hidden layer as text representation and later they pass it to other models for the further downstream task. Bert's last layer looks like this : Where we take the [CLS] token of each sentence : Image source I went through many discussion on this huggingface issue, datascience forum question, github issue Most of the data scientist gives this explanation : BERT is bidirectional, the [CLS]

Linuxer-"Linux开发者自己的媒体"第四月稿件录取和赠书名单

╄→尐↘猪︶ㄣ 提交于 2020-12-01 10:35:26
原创 Linuxer Linux阅码场 2017-11-11 Linuxer已经从一个单纯的读者服务公众号转变为一个为广大用户解决linux学习,工作以及职业生涯实际问题的平台。用户参与,才能让这个平台更加实用,有效。Linuxer平台号召各路大虾一起来建设这个平台,“Linuxer”是广大linuxer的“Linuxer”。 第4个月稿件录取和赠书名单如下: 作者 赠送书 作品 明鑫 奔跑吧Linux内核》 吴锦华/明鑫: 用户态文件系统(FUSE)框架分析和实战 吴锦华 《奔跑吧linux内核》 吴锦华/明鑫: 用户态文件系统(FUSE)框架分析和实战 王玉成 《Deep Learning 深度学习》 王玉成: Android Things 第3个月稿件录取和赠书名单如下: 作者 赠送书 作品 魏永明 《微信小程序开发实战》 魏永明: MiniGUI的涅槃重生之路 郭健 《奔跑吧linux内核》 郭健: Linux内存逆向映射(reverse mapping)技术的前世今生 谢宝友 《奔跑吧linux内核》 谢宝友: 深入理解Linux RCU之一——从硬件说起 谢宝友:深入理解Linux RCU:从硬件说起之内存屏障 黄伟亮 《机器人爱好者(第4辑)》 黄伟亮: 探秘Linux的块设备和根 宋牧春 《奔跑吧linux内核》 宋牧春: Linux设备树文件结构与解析深度分析(1

What is tensorflow.python.data.ops.dataset_ops._OptionsDataset?

蹲街弑〆低调 提交于 2020-12-01 09:46:52
问题 I am using the Transformer code from tensorflow - https://www.tensorflow.org/beta/tutorials/text/transformer In this code, the dataset used is loaded like this - examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', with_info=True, as_supervised=True) train_examples, val_examples = examples['train'], examples['validation'] When I check the type of train_examples using : type(train_examples) I get the following as output - tensorflow.python.data.ops.dataset_ops._OptionsDataset Now I

module 'tensorflow._api.v2.train' has no attribute 'GradientDescentOptimizer'

≡放荡痞女 提交于 2020-12-01 09:36:19
问题 I used Python 3.7.3 and installed tensorflow 2.0.0-alpha0,But there are some problems。such as module 'tensorflow._api.v2.train' has no attribute 'GradientDescentOptimizer' Here's all my code import tensorflow as tf import numpy as np x_data=np.random.rand(1,10).astype(np.float32) y_data=x_data*0.1+0.3 Weights = tf.Variable(tf.random.uniform([1], -1.0, 1.0)) biases = tf.Variable(tf.zeros([1])) y=Weights*x_data+biases loss=tf.reduce_mean(tf.square(y-y_data)) optimizer=tf.train

Tensorflow LinearRegressor Feature Cannot have rank 0

独自空忆成欢 提交于 2020-12-01 07:20:45
问题 I am following the tutorial but failed to build a linear regressor for a dataset generated on top of y=x . Here is the last part of my code, and you can find the complete source code here if you want to reproduce my error: _CSV_COLUMN_DEFAULTS = [[0],[0]] _CSV_COLUMNS = ['x', 'y'] def input_fn(data_file): def parse_csv(value): print('Parsing', data_file) columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS) features = dict(zip(_CSV_COLUMNS, columns)) labels = features.pop('y')

Keras initialize large embeddings layer with pretrained embeddings

心已入冬 提交于 2020-12-01 06:12:50
问题 I am trying to re-train a word2vec model in Keras 2 with Tensorflow backend by using pretrained embeddings and custom corpus. This is how I initialize the embeddings layer with pretrained embeddings: embedding = Embedding(vocab_size, embedding_dim, input_length=1, name='embedding', embeddings_initializer=lambda x: pretrained_embeddings) where pretrained_embeddings is a big matrix of size vocab_size x embedding_dim This works as long as pretrained_embeddings is not too big. In my case

Keras: change learning rate

倖福魔咒の 提交于 2020-12-01 03:41:40
问题 I'm trying to change the learning rate of my model after it has been trained with a different learning rate. I read here, here, here and some other places i can't even find anymore. I tried: model.optimizer.learning_rate.set_value(0.1) model.optimizer.lr = 0.1 model.optimizer.learning_rate = 0.1 K.set_value(model.optimizer.learning_rate, 0.1) K.set_value(model.optimizer.lr, 0.1) model.optimizer.lr.assign(0.1) ... but none of them worked! I don't understand how there could be such confusion