剑指offer-动态规划-贪心算法--剪绳子-python
题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。 输入描述: 输入一个数n,意义见题面。(2 <= n <= 60) 思路:动态规划:有这几个特殊情况:当n为0时,没发裁输出为0n为1时,最大分子为1,输出1n为2时,最大分子为2,输出2n为3时,最大分子为2,输出2然后从4开始遍历,将切割的所有可能找出来,,由于当i大于n//2时,就不用在计算了,重复计算,然后与之相乘 temp = prod[i] * prod[n - i]最后将结果与max作比较,放入数组中去。 class Solution: def cutRope(self, number): # write code here # res=1 if number <= 1: return 0 elif number <= 2: return 1 elif number <= 3: return 2 prod = [0, 1, 2, 3] for n in range(4, number + 1): maxs = 0 for i in range(1, n//2): temp