随机抽样一致性算法

随机抽样一致性算法(RANSAC)资料合集

假装没事ソ 提交于 2019-11-29 23:29:43
本文翻译自维基百科,译者: http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html ,本人在此基础上进行了一些添加和修改。 英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。 RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。 RANSAC的基本假设是: (1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释; (2)“局外点”是不能适应该模型的数据; (3)除此之外的数据属于噪声。 局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。 RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。 一、示例 一个简单的例子是从一组观测数据中找出合适的2维直线。假设观测数据中包含局内点和局外点,其中局内点近似的被直线所通过,而局外点远离于直线。简单的最小二乘法不能找到适应于局内点的直线