Difference in Python statsmodels OLS and R's lm
I'm not sure why I'm getting slightly different results for a simple OLS, depending on whether I go through panda's experimental rpy interface to do the regression in R or whether I use statsmodels in Python. import pandas from rpy2.robjects import r from functools import partial loadcsv = partial(pandas.DataFrame.from_csv, index_col="seqn", parse_dates=False) demoq = loadcsv("csv/DEMO.csv") rxq = loadcsv("csv/quest/RXQ_RX.csv") num_rx = {} for seqn, num in rxq.rxd295.iteritems(): try: val = int(num) except ValueError: val = 0 num_rx[seqn] = val series = pandas.Series(num_rx, name="num_rx")