深度学习之上,图神经网络(GNN )崛起
由于深度学习在可推理和可解释性方面存在比较大的局限性,结合了图计算和深度学习的图神经网络(GNNs)成为近期学术界和工业界研究热度颇高的新方向之一。业界普遍认为,GNN 恰好可以弥补前面提到的深度学习无法解决的两个缺陷。近一年 GNN 在越来越多应用场景上取得了成功,但它也仍面临着许多挑战。 蚂蚁金服在今年的数据挖掘研究领域顶级年会 KDD 2019 上召开了以“图神经网络研究及实际应用”为主题的研讨会。InfoQ记者有幸采访到了蚂蚁金服人工智能部研究员宋乐,聊聊深度学习和 GNN 在大型工业级场景的应用和实践、目前面临的难点挑战,以及未来技术前进的可能方向。 宋乐老师在 KDD 2019 GNN已成“AI新贵” 除了传统的深度学习方法,图神经网络(GNN)在近两年也是公认的“AI 新贵”。由于图结构的强大表现力,用机器学习 / 深度学习方法分析图的研究越来越受重视。而图神经网络(GNN)由于较好的性能和可解释性,已经成为一种广泛应用的图分析方法,更有不少人将它看作“深度学习的新一代技术”。近一年来,学界和工业界陆续推出了 GNN 的相关框架和工具,进一步促进了这一领域的蓬勃发展。 GNN 提供了图表征学习(Graph representation learning)或图嵌入技术(Graph embedding)的框架,可以用于各种图数据上的监督,半监督及强化学习