《模式识别与机器学习PRML》PDF中英文+代码测试+习题答案+勘误笔记
学习机器学习必须具备一定的研究基础,应该仔细学习《模式识别与机器学习》,详略难易得当。由于内容选取的少而精,所以作者可以深入浅出的介绍每一种模型,不会因为太过简略而使读者疑惑,同时对于高阶的内容又点到为止,使得整本书的难度保持在了一个对于初学者可以接受的范围内。基本上,当年看这本书时,就是把它当成一个个的tutorial来看。比如在学EM算法的时候,主要就是以这本书的内容为主,配合网上其他资源学习。这一点在学习Graphical model的时候更加明显。众所周知这个领域比较经典的著作是Probabilistic GraphicalModels以及Bayesian Reasoning and Machine Learning,但是这是两本大部头的书,一开始读起来会比较吃力。而本书的作者Bishop本身就是搞Bayesian learning以及graphical model的,PRML这边书用几章的内容就把这个领域最核心的概念以及方法解释了一遍,不得不让人佩服作者的功力。 《模式识别与机器学习》内容选取得当。书中所介绍的所有模型以及算法,放到今天,依然是理解学习ML最最基本的组成部分,这些内容,对于读者了解更高级的算法,几乎都是必不可少的。这本书并没有试图涵盖当时所有的机器学习算法,而是精选了ML里面最本质最fundamental的方法,由此可以看出