大一暑期CS231n网课笔记(1)
一周前我就已经在看CS231n的网课了,但是当时并没有很好的总结知识点,所以内容不免遗忘许多,开始review啦,一边复习前面的知识点,一边学习后面的知识点。人类的视觉系统是很强大的,尽管这些年在计算机视觉领域我们取得了巨大的进步,但是我们仍有很长的路需要走。 在课程的最开始,我们了解计算机视觉及其发展历史和关于本课程的描述,接下来我们需要深入了解这些算法,学习这些算法在实践中到底是如何工作的。 本课程的第一个重点是 图像分类 问题。 在图像分类中,让你的算法接收一张图作为输入,从固定的类别集合中选出该图像所属的类别,从而对图像分类。 当你在做图像分类的时候,系统接收一些输入图像,比如说可爱的猫咪,并且系统已经清楚一些确定了分类或标签的集合,这些标签可能是一只狗狗或者一只猫咪,也有可能是一辆卡车,亦或是一架飞机,还有一些固定的类别标签集合,那计算机的工作就是看图片并且给它分配其中一些固定的分类标签。 仔细思考,计算机看一张图片时看到的是什么,它肯定没有一只猫咪的整体概念,和我们所看的图片当然是不同的,计算机呈现图片的方式其实就是一大堆数字。所以图像可能就是一些像800乘以600的像素,每一个像素由三个数字表示,给出像素红、绿、蓝三个值,所以,对于计算机来说,这是一个巨大的数字阵列,这很难从中提取猫咪的特性,我们把这个问题定义为语义鸿沟