综述:目标检测二十年
↑ 点击 蓝字 关注视学算法 作者丨深兰科学院李亦超 来源丨 DeepBlue深兰科技 编辑丨极市平台 极市导读 以2014年为分水岭,作者将过去二十年的目标检测发展进程分为两个阶段:2014年之前的传统目标检测,以及之后基于深度学习的目标检测。接下来,文章列举了二十年来目标检测领域的关键技术,思路非常清晰。 过去二十年中与 “ 目标检测 ” 相关的出版物数量的增长 二十年 在计算机视觉领域中有几个基本的任务:图像分类[3]、目标检测[4]、实例分割[5]及语义分割[6],其中目标检测作为计算机视觉中最基本的任务在近年来引起了广泛关注。某种意义上,它在过去二十年内的发展也是计算机视觉发展史的缩影。如果我们将今天基于深度学习的目标检测技术比作一场“热兵器革命”,那么 回顾20年前的技术 时即可窥探“冷兵器”时代的智慧。 目标检测是一项计算机视觉任务。正如视觉对于人的作用一样,目标检测旨在解决计算机视觉应用中两个最基本的问题: 1. 该物体是什么?2. 该物体在哪里? 当然,聪明的人可能会立即想到第三个问题: “该物体在干什么?” 这即是更进一步的逻辑及认知推理,这一点在近年来的目标检测技术中也越来越被重视。不管怎样,作为计算机视觉的基本任务,它也是其他计算机视觉任务的主要成分,如实例分割、图像字幕、目标跟踪等。 从应用的角度来看,目标检测可以被分为两个研究主题 :“ 通用目标检测