用 Java 训练深度学习模型,原来这么简单
作者 | DJL-Keerthan&Lanking 来源 | HelloGitHub 头图 | CSDN下载自东方IC 前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言。得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区。尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺。现今主要流行的深度学习模型都是用 Python 编译和训练的。对于 Java 开发者而言,如果要进军深度学习界,就需要重新学习并接受一门新的编程语言同时还要学习深度学习的复杂知识。这使得大部分 Java 开发者学习和转型深度学习开发变得困难重重。 为了减少 Java 开发者学习深度学习的成本,AWS 构建了 Deep Java Library (DJL),一个为 Java 开发者定制的开源深度学习框架。它为 Java 开发者对接主流深度学习框架提供了一个桥梁。 在这篇文章中,我们会尝试用 DJL 构建一个深度学习模型并用它训练 MNIST 手写数字识别任务。 什么是深度学习? 在我们正式开始之前,我们先来了解一下机器学习和深度学习的基本概念。 机器学习是一个通过利用统计学知识,将数据输入到计算机中进行训练并完成特定目标任务的过程。这种归纳学习的方法可以让计算机学习一些特征并进行一系列复杂的任务,比如识别照片中的物体。由于需要写复杂的逻辑以及测量标准