云函数 SCF 与对象存储实现 WordCount 算法
本文将尝试通过 MapReduce 模型实现一个简单的 WordCount 算法,区别于传统使用 Hadoop 等大数据框架,本文使用云函数 SCF 与对象存储 COS 来实现。 MapReduce 在维基百科中的解释如下: MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于 1TB)的并行运算。概念「Map(映射)」和「Reduce(归纳)」,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。 通过这段描述,我们知道,MapReduce 是面向大数据并行处理的计算模型、框架和平台,在传统学习中,通常会在 Hadoop 等分布式框架下进行 MapReduce 相关工作,随着云计算的逐渐发展,各个云厂商也都先后推出了在线的 MapReduce 业务。 理论基础 在开始之前,我们根据 MapReduce 的要求,先绘制一个简单的流程图: 在这个结构中,我们需要 2 个云函数分别作 Mapper 和 Reducer;以及 3 个对象存储的存储桶,分别作为输入的存储桶、中间临时缓存存储桶和结果存储桶。在实例前,由于我们的函数即将部署在广州区,因此在广州区建立 3 个存储桶: 对象存储1 ap-guangzhou srcmr 对象存储2 ap-guangzhou middlestagebucket 对象存储3 ap-guangzhou