python数据分析——在python中实现线性回归
线性回归 是基本的统计和机器学习技术之一。经济,计算机科学,社会科学等等学科中,无论是统计分析,或者是机器学习,还是科学计算,都有很大的机会需要用到线性模型。建议先学习它,然后再尝试更复杂的方法。 本文主要介绍 如何逐步在Python中实现线性回归。 而至于线性回归的数学推导、线性回归具体怎样工作,参数选择如何改进回归模型将在以后说明。 回归 回归分析是统计和机器学习中最重要的领域之一。有许多可用的回归方法。线性回归就是其中之一。而线性回归可能是最重要且使用最广泛的回归技术之一。这是最简单的回归方法之一。它的主要优点之一是线性回归得到的结果十分容易解释。那么回归主要有: 简单线性回归 多元线性回归 多项式回归 如何在python中实现线性回归 用到的packages NumPy NumPy 是Python的基础科学软件包,它允许在单维和多维数组上执行许多高性能操作。 scikit-learn scikit-learn 是在NumPy和其他一些软件包的基础上广泛使用的Python机器学习库。它提供了预处理数据,减少维数,实现回归,分类,聚类等的方法。 statsmodels 如果要实现线性回归并且需要功能超出scikit-learn的范围,则应考虑使用 statsmodels 可以用于估算统计模型,执行测试等。 scikit-learn的简单线性回归 1