tensorflow打印内部张量
1. training_decoder_output 保存了 dynamic_decoder 过程的结果,其形式为 tuple(rnn_output,sample_id) traing_logits 获取了 training_decoder_output 中的 rnn_output k1 获取 shape,k2 获取具体 traing_logits ֵ training_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) training_logits = tf.identity(training_decoder_output.rnn_output, 'logits') k1=tf.shape(training_logits) k2=training_logits 2.在 Session 中, feed 数据,并打印 training_logits 的值 m1,m2=sess.run([k1,k2],{input_data: sources_batch, targets: targets_batch, lr: learning_rate,