rmq

Range Minimum Query <O(n), O(1)> approach (from tree to restricted RMQ)

醉酒当歌 提交于 2019-12-18 11:39:32
问题 So, I read this TopCoder tutorial on RMQ (Range Minimum Query), and I got a big question. On the section where he introduced the approach, what I can understand until now is this: (The whole approach actually uses methodology introduced in Sparse Table (ST) Algorithm, Reduction from LCA to RMQ, and from RMQ to LCA) Given an array A[N], we need to transform it to a Cartesian Tree, thus making a RMQ problem a LCA (Lowest Common Ancestor) problem. Later, we can get a simplified version of the

Update one item in segment tree

一曲冷凌霜 提交于 2019-12-12 03:47:55
问题 A part of a problem I'm solving involves getting the minimum in a range of an array (RMQ), so I implemented a segment tree and it works fine so far. Then I want to update one item in the original array (There are no updates with more than one) and update it in the segment tree. What I do so far is traverse the segment tree from top to bottom till I reach the leaves, but there seems to be some bug in this. Here is the update part of the code, what seems to be wrong there ? P.S. n is not a

Wrong Answer - Unable To Find Bug - Range Minimum Query Using Segment Trees

社会主义新天地 提交于 2019-12-11 15:38:10
问题 I am trying to learn segment tree through https://www.topcoder.com/community/data-science/data-science-tutorials/range-minimum-query-and-lowest-common-ancestor/ After Understanding the basics of segment trees I tried to solve this question. But only one test case is passed and on the second one, I am getting tle. On further inspection comparing the two answers using filediff I found out there are wrong answers. I am unable to find any errors. Please help. this code is for creating and

Multiplication in a range

淺唱寂寞╮ 提交于 2019-12-11 02:54:42
问题 I have an array to 10 numbers supprse A[10] = {1,2,3,4,5,6,7,8,9,10} and I have to compute the multiplication of numbers in a particular range but not getting correct answer, I am using segment tree and dont know how to use query operation Here is my code : #include<stdio.h> #define m 1000000000 #define MAX 100010 typedef unsigned long long ull; ull a[MAX]; ull tree[4*MAX]; void build_tree(int n,int b,int e){ if(b>e)return ; else if(b==e){ tree[n] = a[b]; return ; } build_tree(n*2,b,(b+e)/2);

Pseudo Range Minimum Query

生来就可爱ヽ(ⅴ<●) 提交于 2019-12-08 09:29:23
问题 I have a problem with my assignment which requires me to solve a problem that is similar to range-minimum-query. The problem is roughly described below: I am supposed to code a java program which reads in large bunch of integers (about 100,000) and store them into some data structure. Then, my program must answer queries for the minimum number in a given range [i,j]. I have successfully devised an algorithm to solve this problem. However, it is just not fast enough. The pseudo-code for my

[转]RabbitMQ集群原理与搭建

蹲街弑〆低调 提交于 2019-12-06 12:47:26
摘要:实际生产应用中都会采用消息队列的集群方案,如果选择RabbitMQ那么有必要了解下它的集群方案原理 一般来说,如果只是为了学习RabbitMQ或者验证业务工程的正确性那么在本地环境或者测试环境上使用其单实例部署就可以了,但是出于MQ中间件本身的可靠性、并发性、吞吐量和消息堆积能力等问题的考虑,在生产环境上一般都会考虑使用RabbitMQ的集群方案。 对于RabbitMQ这么成熟的消息队列产品来说,搭建它并不难并且也有不少童鞋写过如何搭建RabbitMQ消息队列集群的博文,但可能仍然有童鞋并不了解其背后的原理,这会导致其遇到性能问题时无法对集群进行进一步的调优。本篇主要介绍RabbitMQ集群方案的原理,如何搭建具备负载均衡能力的中小规模RabbitMQ集群,并最后给出生产环境构建一个能够具备高可用、高可靠和高吞吐量的中小规模RabbitMQ集群设计方案。 一、RabbitMQ集群方案的原理 RabbitMQ这款消息队列中间件产品本身是基于Erlang编写,Erlang语言天生具备分布式特性(通过同步Erlang集群各节点的magic cookie来实现)。因此,RabbitMQ天然支持Clustering。这使得RabbitMQ本身不需要像ActiveMQ、Kafka那样通过ZooKeeper分别来实现HA方案和保存集群的元数据。集群是保证可靠性的一种方式

ST表解决RMQ问题

喜你入骨 提交于 2019-12-05 22:26:09
RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询。对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。 RMQ问题可以用线段树和ST表解决。 线段树:查询复杂度O(log n) 可以修改数列中的值 ST表: 查询复杂度 O(1) 无法修改数列中的值,是在线算法 其实ST表就是个动态规划 对于dp[i][j] ,其含义为以i为起点,长度为2^j这个区间的最大值 转移方程就是把这个区间分成两个小区间的最大值。 https://www.luogu.com.cn/problem/P3865 https://www.cnblogs.com/zwfymqz/p/8581995.html #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int maxn = 1e6 + 5; int n,m; int dp[maxn][21]; int main() { scanf("%d%d",&n,&m); int num; for(int i=1;i<=n;i++) //初始化,区间长度为1

[转]RabbitMQ集群原理与搭建

不打扰是莪最后的温柔 提交于 2019-12-05 15:36:36
摘要:实际生产应用中都会采用消息队列的集群方案,如果选择RabbitMQ那么有必要了解下它的集群方案原理 一般来说,如果只是为了学习RabbitMQ或者验证业务工程的正确性那么在本地环境或者测试环境上使用其单实例部署就可以了,但是出于MQ中间件本身的可靠性、并发性、吞吐量和消息堆积能力等问题的考虑,在生产环境上一般都会考虑使用RabbitMQ的集群方案。 对于RabbitMQ这么成熟的消息队列产品来说,搭建它并不难并且也有不少童鞋写过如何搭建RabbitMQ消息队列集群的博文,但可能仍然有童鞋并不了解其背后的原理,这会导致其遇到性能问题时无法对集群进行进一步的调优。本篇主要介绍RabbitMQ集群方案的原理,如何搭建具备负载均衡能力的中小规模RabbitMQ集群,并最后给出生产环境构建一个能够具备高可用、高可靠和高吞吐量的中小规模RabbitMQ集群设计方案。 一、RabbitMQ集群方案的原理 RabbitMQ这款消息队列中间件产品本身是基于Erlang编写,Erlang语言天生具备分布式特性(通过同步Erlang集群各节点的magic cookie来实现)。因此,RabbitMQ天然支持Clustering。这使得RabbitMQ本身不需要像ActiveMQ、Kafka那样通过ZooKeeper分别来实现HA方案和保存集群的元数据。集群是保证可靠性的一种方式

RMQ问题及ST表

荒凉一梦 提交于 2019-12-04 04:14:13
RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大、最小值的问题。很显然,如果暴力预处理的话复杂度为 \(O(n^2)\) ,而此类问题数据又往往很大,不仅会爆时间,数组也存不下。我们需要一种能够 \(O(n\log n)\) 甚至 \(O(n)\) 预处理的数据结构,这便是ST表。 ST表(Sparse Table,应译为S表)是一种可以以 \(O(n\log n)\) 的优秀复杂度预处理出静态区间上的最大、最小值的算法,其核心是倍增的思想。它使用 \(ST[i][j]\) 表示原数组中 \(i\rightarrow i+2^j-1\) 的区间的最值。那么在查询时,只用找出两点间的距离的最小2的整数幂,然后从区间起点与终点减去这个幂分别查找取最值即可,比如要查询 \(2\rightarrow 7\) ,就可以先查询 \(2\rightarrow 5\) ,再查询 \(4\rightarrow 7\) ,然后相比较即可。 题目 ST表模板 题目大意:求静态区间最大值。 代码 #include<bits/stdc++.h> using namespace std; int n, m; int ST[1000005][25]; int Read() { int x = 0, op = 1; char ch =

RMQ Direct

旧城冷巷雨未停 提交于 2019-12-03 11:01:53
原创转载请注明出处: https://www.cnblogs.com/agilestyle/p/11792398.html RMQ Direct Project Directory Maven Dependency 1 <?xml version="1.0" encoding="UTF-8"?> 2 <project xmlns="http://maven.apache.org/POM/4.0.0" 3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 5 <modelVersion>4.0.0</modelVersion> 6 7 <groupId>org.fool.rmq</groupId> 8 <artifactId>rmq</artifactId> 9 <version>1.0-SNAPSHOT</version> 10 11 <parent> 12 <groupId>org.springframework.boot</groupId> 13 <artifactId>spring-boot-starter