目标检测 | RetinaNet:Focal Loss for Dense Object Detection
3 月,跳不动了?>>> > 论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本。同时,基于FPN设计了RetinaNet,在精度和速度上都有不俗的表现 论文:Focal Loss for Dense Object Detection 论文地址: https://arxiv.org/abs/1708.02002 论文代码: https://github.com/facebookresearch/Detectron Introduction 目前state-of-the-art的目标检测算法大都是two-stage、proposal-driven的网络,如R-CNN架构。而one-stage检测器一直以速度为特色,在精度上始终不及two-stage检测器。因此,论文希望研究出一个精度能与two-stage检测器媲美的one-stage检测器 通过分析, 论文认为阻碍one-stage精度主要障碍是类别不平衡问题(class imbalance) : 在R-CNN架构检测器中,通过two-stage级联和抽样探索法(sampling heuristics)来解决类别不平衡问题。proposal阶段能迅速地将bndbox的数量缩小到很小的范围(1-2k),过滤了大部分背景。而第二阶段