regression

Streamline: 统计学学习与进阶

时光怂恿深爱的人放手 提交于 2020-05-02 10:54:43
[关于统计学专业的学习进阶] Introductory 1.1 Introduction to Statistical Reasoning   统计学概念(实验设计、描述统计、相关和回归、概率、抽样、机会模型、显著性检验等)    Textbook: Seeing Through Statistics, Jessica M. Utts, 2008 1.2 Introduction to Statistics   定量分析方法(概率、抽样分布理论、线性回归、方差分析、置信区间、假设检验等)、软件使用    Textbook: Stats: data and models, De Veaux Richard D, 2016    Textbook: Elementary Statistics, Allan G Bluman, 2008 1.3 Calculus-based Introduction to Statistics   统计概念+数学(随机变量、概率分布、pdf、cdf、均值、方差、相关性、条件分布、条件均值、条件方差、正态分布、卡方分布、F分布、t分布、大数定律、中心极限定理、参数估计、无偏性、一致性、有效性、假设检验、p值、置信区间、极大似然估计等)    Textbook: Probability and statistics for engineering and

How to add linear lines to a plot with multiple data sets of a data frame?

空扰寡人 提交于 2020-05-02 05:32:23
问题 I have the following data frame: expected observed group 1: 0.5371429 0.0000 1 2: 1.3428571 1.3736 1 3: 2.6857143 2.4554 1 4: 5.3714286 3.6403 1 5: 0.5294118 0.0000 2 6: 1.3235294 1.1494 2 7: 2.6470588 1.1364 2 8: 5.2941176 4.9774 2 9: 0.5201207 0.0000 3 10: 1.3003018 1.4327 3 11: 2.6006036 2.5918 3 12: 5.2012072 8.0769 3 13: 0.5155039 1.4851 4 14: 1.2887597 1.0638 4 15: 2.5775194 3.1700 4 16: 5.1550388 6.2500 4 17: 0.4976959 0.0000 5 18: 1.2442396 1.2384 5 19: 2.4884793 3.1073 5 20: 4

什么是单元测试,集成测试,冒烟测试和回归测试?

做~自己de王妃 提交于 2020-05-02 04:30:50
问题: What are unit tests, integration tests, smoke tests, and regression tests? 什么是单元测试,集成测试,冒烟测试和回归测试? What are the differences between them and which tools can I use for each of them? 它们之间有什么区别,我可以为每个工具使用哪些工具? For example, I use JUnit and NUnit for unit testing and integration testing. 例如,我将JUnit和NUnit用于单元测试和集成测试。 Are there any smoke testing or regression testing tools? 有烟雾测试或回归测试工具吗? 解决方案: 参考一: https://stackoom.com/question/2BI8/什么是单元测试-集成测试-冒烟测试和回归测试 参考二: https://oldbug.net/q/2BI8/What-are-unit-tests-integration-tests-smoke-tests-and-regression-tests 来源: oschina 链接: https://my.oschina.net/u

6D姿态估计从0单排——看论文的小鸡篇——Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Est...

一笑奈何 提交于 2020-04-30 21:11:32
we employ a convolutional auto-encoder that has been trained on a large collection of random local patches. We demonstrate that neural networks coupled with a local voting-based approach can be used to perform reliable 3D object detection and pose estimation under clutter and occlusion. To this end, we deeply learn descriptive features from local RGB-D patches and use them afterwards to create hypotheses in the 6D pose space. we train a convolutional autoencoder (CAE) from scratch using random patches from RGB-D images with the goal of descriptor regression. With this network we create

【今日CV 计算机视觉论文速览】Mon, 4 Mar 2019

你。 提交于 2020-04-30 21:05:46
今日CS.CV计算机视觉论文速览 Mon, 4 Mar 2019 Totally 39 papers Interesting: 📚 MaskScoring R-CNN 为实例分割任务中增加了预测质量的评分结果 ,文章提出了网络模块学习预测实例的质量,并为实例分割结果进行打分。这一模块通过实例特征和对应的预测掩膜联合起来得到掩膜区域,实验表明这一机制提高了实例分割的结果,并显著增强了多个的性能。(from 华中科技大学) 实验显示MaskIoU与分数具有更强的相关性: 网络中输出maskIoU的区域及其不同设计: 代码:https://github.com/zjhuang22/maskscoring_rcnn. ref 公众号 📚 EvoNet基于多图像的超分辨网络 ,利用基于残差的EvoNet输出多张超分辨重建图像(2X),并基于图像进行shift-and-fusion融合(2x),最终利用Evo成像模型得到最终的超分辨结果。(from Poland and with Silesian University of Technology) 一些结果: 一些相关算法比较: 高精度数据集 DIV 2K 📚 视频中非标记目标的探索 ,面临着定位和多重物体的挑战。此外现实中的物体还具有明显的长尾效应。研究人员利用10+个小时的视频数据中抽取了360,000个目标,并基于双目多帧候选区域

【今日CV 计算机视觉论文速览】Thu, 28 Mar 2019

流过昼夜 提交于 2020-04-30 19:49:07
今日CS.CV计算机视觉论文速览 Thu, 28 Mar 2019 Totally 32 papers Daily Computer Vision Papers 1.Title: GAN-based Pose-aware Regulation for Video-based Person Re-identification Authors:Alessandro Borgia, Yang Hua, Elyor Kodirov, Neil M. Robertson 2.Title: Privacy Protection in Street-View Panoramas using Depth and Multi-View Imagery Authors:Ries Uittenbogaard, Clint Sebastian, Julien Vijverberg, Bas Boom, Dariu M. Gavrila, Peter H.N. de With 3.Title: Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving Authors:Xinzhu Ma, Zhihui Wang, Haojie Li, Wanli Ouyang,

3D Face Reconstruction

时光怂恿深爱的人放手 提交于 2020-04-30 19:48:50
方法1 Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression http://aaronsplace.co.uk/papers/jackson2017recon/ demo http://cvl-demos.cs.nott.ac.uk/vrn/index.php 原始图像 3D角度1 3D角度2 方法2 来源: oschina 链接: https://my.oschina.net/u/4257655/blog/3965464

论文笔记 Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression

落花浮王杯 提交于 2020-04-30 16:43:57
Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression   该文献采用一个新型的VRN网络对任意的面部姿势和表情的2D图片进行3D面部重建,并绕过3D可变模型的构造(在训练期间)和拟合(在测试期间)。 volumetric representation   文献中是通过CNN回归来预测3D面部的顶点,直接对所有的3D面部点进行预测的话不利于VRN的学习。该文献中将mesh转换为voxel,变成一个192*192*200的矩阵。这样就比较适合CNN。我们先看看mesh和voxel的区别:下面的第一张图是mesh,可以看出就是一个曲面;第二张是voxel,可以看出人脸是由很多个立方体构成的。 作者给出了voxel转成obj的脚本,运行出来是这样的: 这是一个封闭的曲面。这就有个问题了,由CNN预测出来的3D人脸的顶点是不固定的,也就是我们还需要进行一步对齐,将一个固定顶点的模板对齐到CNN预测出来的3D人脸。 mesh转voxel可以用binvox这个工具。 Volumetric Regression Networks(VRN)   该网络由两个Hourglass Networks构成( HN网络 ),两个NH的结构类似,第二个NH对第一个NH的输出进行优化。

How to run linear regression model for each industry-year excluding firm i observations in R?

白昼怎懂夜的黑 提交于 2020-04-30 06:57:07
问题 Here is the dput output of my dataset in R...... data1<-structure(list(Year = c(1998, 1999, 1999, 2000, 1996, 2001, 1998, 1999, 2002, 1998, 2005, 1998, 1999, 1998, 1997, 1998, 2000), `Firm name` = c("A", "A", "B", "B", "C", "C", "D", "D", "D", "E", "E", "F", "F", "G", "G", "H", "H"), Industry = c("AUTO", "AUTO", "AUTO", "AUTO", "AUTO", "AUTO", "AUTO", "AUTO", "AUTO", "Pharma", "Pharma", "Pharma", "Pharma", "Pharma", "Pharma", "Pharma", "Pharma"), X = c(1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16

学习笔记之scikit-learn

痞子三分冷 提交于 2020-04-29 20:40:18
scikit-learn: machine learning in Python — scikit-learn 0.20.0 documentation https://scikit-learn.org/stable/index.html Simple and efficient tools for data mining and data analysis Accessible to everybody, and reusable in various contexts Built on NumPy, SciPy, and matplotlib Open source, commercially usable - BSD license scikit-learn - Wikipedia https://en.wikipedia.org/wiki/Scikit-learn Scikit-learn (formerly scikits.learn ) is a free software machine learning library for the Python programming language. [3] It features various classification , regression and clustering algorithms including