pytorch

Why is the Pytorch Dropout layer affecting all values, not only the ones set to zero?

核能气质少年 提交于 2021-01-28 18:42:41
问题 The dropout layer from Pytorch changes the values that are not set to zero. Using Pytorch's documentation example: (source): import torch import torch.nn as nn m = nn.Dropout(p=0.5) input = torch.ones(5, 5) print(input) tensor([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) Then I pass it through a dropout layer: output = m(input) print(output) tensor([[0., 0., 2., 2., 0.], [2., 0., 2., 0., 0.], [0., 0., 0., 0., 2.], [2., 2., 2.,

pytorch android部署 demo 用自己训练的自定义模型踩坑记录

谁说胖子不能爱 提交于 2021-01-28 14:44:43
记录一个用自己定义的模型(一个稍微改了分类数目的vgg网络,分40类)加到 github项目 里面时遇到的小坑: 2021 - 01 - 26 19:02:42 . 191 19212 - 19370 / org . pytorch . demo E / AndroidRuntime: FATAL EXCEPTION: ModuleActivity Process : org . pytorch . demo , PID: 19212 com . facebook . jni . CppException: aten::_convolution ( Tensor input , Tensor weight , Tensor? bias , int [ ] stride , int [ ] padding , int [ ] dilation , bool transposed , int [ ] output_padding , int groups , bool benchmark , bool deterministic , bool cudnn_enabled ) - > ( Tensor ) : Expected at most 12 arguments but found 13 positional arguments . : / home / xutengfei / .

斯坦福教授| 什么是博士论文?

≡放荡痞女 提交于 2021-01-28 14:39:07
本文中的闪图复制自北岭加州州立大学(California State University, Northridge) 网页 https://www. csun.edu/~vcpsy00h/crea tivity/define.htm 注:文末附交流群,最近赶ACL,比较忙,很多同学加了没有回过期了,可以重新加一下,备注好的一定会回复,敬请谅解。 这是我在1993年写给一名学生的信,内容涉及他的论文初稿。2003年,我修改了一下这封信,删除了与该学生相关的具体内容,并将修改后的这封信作为对所有研究生的额外知识要求。 I wrote this in 1993 as a letter to a student concerning a draft of his dissertation. in 2003 I edited it to remove some specific references to the student and present it as a small increment to the information available to my grad students. --spaf 先让我以一些看似显而易见的事情开始。Let me start by reviewing some things that may seem obvious: 第一

Pytorch Linear Layer now automatically reshape the input?

纵饮孤独 提交于 2021-01-28 11:47:27
问题 I remember in the past, nn.Linear only accepts 2D tensors. But today, I discover that nn.Linear now accepts 3D, or even tensors with arbitrary dimensions. X = torch.randn((20,20,20,20,10)) linear_layer = nn.Linear(10,5) output = linear_layer(X) print(output.shape) >>> torch.Size([20, 20, 20, 20, 5]) When I check the documentation for Pytorch, it does say that it now takes Input: :math: (N, *, H_{in}) where :math: * means any number of additional dimensions and :math: H_{in} = \text{in\

Understanding cdist() function

生来就可爱ヽ(ⅴ<●) 提交于 2021-01-28 09:40:56
问题 What does this new_cdist() function actually do? More specifically: Why is there a sqrt() operation when the AdderNet paper does not use it in its backward propagation equation? How is needs_input_grad[] used? def new_cdist(p, eta): class cdist(torch.autograd.Function): @staticmethod def forward(ctx, W, X): ctx.save_for_backward(W, X) out = -torch.cdist(W, X, p) return out @staticmethod def backward(ctx, grad_output): W, X = ctx.saved_tensors grad_W = grad_X = None if ctx.needs_input_grad[0]:

PyTorch transfer learning with pre-trained ImageNet model

本秂侑毒 提交于 2021-01-28 09:26:34
问题 I want to create an image classifier using transfer learning on a model already trained on ImageNet. How do I replace the final layer of a torchvision.models ImageNet classifier with my own custom classifier? 回答1: Get a pre-trained ImageNet model ( resnet152 has the best accuracy): from torchvision import models # https://pytorch.org/docs/stable/torchvision/models.html model = models.resnet152(pretrained=True) Print out its structure so we can compare to the final state: print(model) Remove

PyTorch transfer learning with pre-trained ImageNet model

こ雲淡風輕ζ 提交于 2021-01-28 09:25:32
问题 I want to create an image classifier using transfer learning on a model already trained on ImageNet. How do I replace the final layer of a torchvision.models ImageNet classifier with my own custom classifier? 回答1: Get a pre-trained ImageNet model ( resnet152 has the best accuracy): from torchvision import models # https://pytorch.org/docs/stable/torchvision/models.html model = models.resnet152(pretrained=True) Print out its structure so we can compare to the final state: print(model) Remove

Mini batches with DataLoader and a 3D input. (Pytorch)

做~自己de王妃 提交于 2021-01-28 06:50:47
问题 I have been struggling to manage and create batches for a 3D tensor. I have used it before as a way to create batches for 1D tensor. However, in my current research, I need to create batches out of a tensor with shape (1024,1024,2). I created custom data to use as my input for the DataLoader method in pytorch. I created the following for the 1D array: class CustomDataset(Dataset): def __init__(self, x_tensor, y_tensor): self.xdomain = x_tensor self.ydomain = y_tensor def __getitem__(self,

Loading a huge dataset batch-wise to train pytorch

老子叫甜甜 提交于 2021-01-28 05:59:30
问题 I am training a LSTM in-order to classify the time-series data into 2 classes(0 and 1).I have huge data-set on the drive where where the 0-class and the 1-class data are located in different folders.I am trying to train the LSTM batch-wise using by creating a Dataset class and wrapping the DataLoader around it. I have to do pre-processing such as reshaping.Here's my code which does that ` class LoadingDataset(Dataset): def __init__(self,data_root1,data_root2,file_name): self.data_root1=data

determinant of a complex matrix in PyTorch

泪湿孤枕 提交于 2021-01-28 05:00:07
问题 Is there a way to calculate the determinant of a complex matrix in PyTroch? torch.det is not implemented for 'ComplexFloat' 回答1: Unfortunately it's not implemented currently. One way would be to implement your own version or simply use np.linalg.det . Here is a short function which computes the determinant of a complex matrix that I wrote using LU-decomposition: def complex_det(A): def complex_diag(A): return torch.view_as_complex(torch.stack((A.real.diag(), A.imag.diag()),dim=1)) #Perform LU