Zookeeper高级
1.1. 一致性协议概述 前面已经讨论过,在分布式环境下,有很多不确定性因素,故障随时都回发生,也讲了 CAP 理论, BASE 理论 我们希望达到,在分布式环境下能搭建一个高可用的,且数据高一致性的服务,目标是这样,但 CAP 理论告诉我们要达到这样的理想环境是不可能的。这三者最多完全满足 2 个。 在这个前提下, P (分区容错性)是必然要满足的,因为毕竟是分布式,不能把所有的应用全放到一个服务器里面,这样服务器是吃不消的,而且也存在单点故障问题。 所以,只能从一致性和可用性中找平衡。 怎么个平衡法?在这种环境下出现了 BASE 理论: 即使无法做到强一致性,但分布式系统可以根据自己的业务特点,采用适当的方式来使系统达到最终的一致性; BASE 由 Basically Avaliable 基本可用、 Soft state 软状态、 Eventually consistent 最终一致性组成,一句话概括就是:平时系统要求是基本可用,除开成功失败,运行有可容忍的延迟状态,但是,无论如何经过一段时间的延迟后系统最终必须达成数据是一致的。 其实可能发现不管是 CAP 理论,还是 BASE 理论,他们都是理论,这些理论是需要算法来实现的,今天讲的 2PC 、 3PC 、 Paxos 算法, ZAB 算法就是干这事情。 所以今天要讲的这些的前提一定是分布式,解决的问题全部都是在分布式环境下