paxos

What is a “view” in the Paxos consensus algorithm?

一个人想着一个人 提交于 2019-12-11 08:23:32
问题 I have pasted pseudocode for a paxos algorithm below and was wondering if someone could point me in the right direction. I am trying to implement the algorithm below, but I'm a confused what exactly "views" represents below. I know the comment says it is a "map of past view numbers to values", but if someone could explain to me what exactly these "values" are and what "view numbers" are. state: num_h: highest proposal # seen in a prepare num_a, val_a: highest value and proposal # which node

paxos - could someone explain Accept message with example

北城以北 提交于 2019-12-11 08:10:57
问题 I read this post on Paxos paxos value choice but still I am not clear. Assume we run the Paxos for first time and Proposer sends the Prepare and the Acceptors reply with (null, null) since they have not learned any value and so Proposer agrees upon its own value and sends it to the acceptors which they accept. The thing which is confusing me is when a Proposer has received the Promise-acks and needs to send an Accept message: If any Acceptors had previously accepted any proposal, then they'll

Does paxos “ignore” the request for updating the value if it is not in sync with highest proposal number sent by acceptor?

主宰稳场 提交于 2019-12-11 02:53:46
问题 Title here could be misleading. I will try my best to explain my doubt through an example. I am reading about paxos algorithm from wiki and other sources. 1) Imagine a situation where a client's request to update a value ( X in below example) is processed. After one round of Paxos, a value Vb is chosen because Acceptors reply's to Proposers contain their previously accepted Proposal number and the corresponding value. In the case below, the three acceptors send (8,Va),(9,Vb),(7,Vc) to

How does one handled skipped event numbers with Paxos?

本小妞迷上赌 提交于 2019-12-07 22:27:56
问题 If we are running multi-paxos then a node may see: Propose(N) Accept!(N,Vn) Accept!(N+1,Vm) Accept!(N+4,Vo) // huh? where is +2, +3? Accept!(N+5,Vp) This may be because either: There was a stable leader but the network local to this node dropped else delayed +2 and +3. There was an outage such that there were two attempts to propose such that +2 and +3 were failed rounds proposals In general operations on the distributed finite state machine wont commute such that a node should apply all

How does one handled skipped event numbers with Paxos?

跟風遠走 提交于 2019-12-06 09:28:43
If we are running multi-paxos then a node may see: Propose(N) Accept!(N,Vn) Accept!(N+1,Vm) Accept!(N+4,Vo) // huh? where is +2, +3? Accept!(N+5,Vp) This may be because either: There was a stable leader but the network local to this node dropped else delayed +2 and +3. There was an outage such that there were two attempts to propose such that +2 and +3 were failed rounds proposals In general operations on the distributed finite state machine wont commute such that a node should apply all operations in order. This implies that a node needs to be able to distinguish between the two cases. If it

paxos value choice

荒凉一梦 提交于 2019-12-06 06:15:55
问题 I've read about paxos on wiki page and the paper (paxos made simple). However, I'm still confused by some details: In phase 1a, does the proposer include the value that it intends to choose in the proposal to acceptors? In phase 1b, acceptor is supposed to return the value that it accepted previously if any. what is the life time of the value? IOW, when is it considered accepted and when does it get overwritten/dropped? Some updates about the life time question. IIUC, after the first

10分钟弄懂Raft算法

佐手、 提交于 2019-12-05 20:34:04
分布式系统在极大提高可用性、容错性的同时,带来了一致性问题(CAP理论)。Raft算法能够解决分布式系统环境下的一致性问题。 我们熟悉的ETCD注册中心就采用了这个算法;你现在看的这篇微信公众号文章,也是保存在基于Raft算法的高可用存储服务器中。 没有耐心看文字,就直接 拉到第四章 。 一、Raft算法是什么? 过去,Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现,Google的分布式锁系统Chubby作为Paxos实现曾经遭遇到很多坑。后来斯坦福大学提出了Raft算法。 Raft是用于管理复制日志的一致性算法。它的效果相当于(multi-)Paxos,跟Paxos一样高效,但结构与Paxos不同。这使得Raft比Paxos更容易理解,也为构建实用系统提供了更好的基础。 下图是斯坦福大学的Diego Ongaro和John Ousterhout在《In Search of an Understandable Consensus Algorithm》一文(提出Raft算法的论文)中,依据Raft学习难度的实验数据绘制的。实验对象是斯坦福大学和加州大学伯克利分校的高年级本科生和研究生。这些天才也觉得Paxos很难。所以对于大多数人看不懂Paxos算法是很正常的,看不懂Raft原理也不奇怪。 二、什么是一致性(Consensus) 一致性是分布式系统容错的基本问题

Paxos协议理解

与世无争的帅哥 提交于 2019-12-05 19:48:38
第三次报告: 理解Paxos协议 一、 Paxos协议背景 什么是Paxos协议? 一般地,从客户端和服务器的角度,任何一个分布式系统都可以理解成由一个服务器集合和一个客户端集合组成,一个或多个客户端向一个或多个服务器发送命令,服务器接收到命令后,执行相应操作以提供服务。可以将每个服务器建模成一个 决定状态机 (DSM:对任意输入只有唯一状态转移路径的状态机)。它具有自身的状态,在接收到客户端的命令后,作出相应的响应,进而状态发生转移。 现在考虑一个简单的存储数据A的服务。最简单的情况下,该服务对应的服务器集合只有一个元素,也就是说只有一个服务器负责处理来自客户端的对数据A的写入。这个服务器对应的状态机的状态可以定义为: 数据A的值 。当客户端的命令到来时,服务器状态机做出响应,并导致状态转移。即使有多个客户端发送命令,因为只有单个服务器且输入是离散的,因此只需要这个服务器决定执行哪个命令。 然而,当单个服务器出现故障甚至宕机,那么这个服务就会无法使用。为避免这种情况,负责数据A存储服务的服务器集合应该包含多个服务器,这样即使其中某(几)个服务器发生故障,其它服务器应当也能提供服务。这种当系统部分出错仍能提供服务的概念被称为错误容忍(Fault tolerant)。 现在,服务器集合中的每个服务器都要维护自己的状态机。每个状态机的状态都是自己那份数据A的值。显然,由于状态机是决定的

图解分布式一致性协议Paxos

扶醉桌前 提交于 2019-12-05 18:52:05
图解分布式一致性协议Paxos https://www.cnblogs.com/hugb/p/8955505.html Paxos协议/算法是分布式系统中比较重要的协议,它有多重要呢? <分布式系统的事务处理> : Google Chubby的作者Mike Burrows说过这个世界上只有一种一致性算法,那就是Paxos,其它的算法都是残次品。 <大规模分布式存储系统> : 理解了这两个分布式协议之后(Paxos/2PC),学习其他分布式协议会变得相当容易。 学习Paxos算法有两部分:a) 算法的原理/证明;b) 算法的理解/运作。 理解这个算法的运作过程其实基本就可以用于工程实践。而且理解这个过程相对来说也容易得多。 网上我觉得讲Paxos讲的好的属于这篇: paxos图解 及 Paxos算法详解 ,我这里就结合 wiki上的实例 进一步阐述。一些paxos基础通过这里提到的两篇文章,以及wiki上的内容基本可以理解。 算法内容 Paxos在原作者的《Paxos Made Simple》中内容是比较精简的: Phase 1 (a) A proposer selects a proposal number n and sends a prepare request with number n to a majority of acceptors. (b) If an

[转帖]【ZOOKEEPER系列】Paxos、Raft、ZAB

点点圈 提交于 2019-12-05 16:27:32
【ZOOKEEPER系列】Paxos、Raft、ZAB 2018-07-11 12:09:49 wangzy-nice 阅读数 2428 更多 分类专栏: zookeeper 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/qq_34370153/article/details/80998622 ZOOKEEPER系列 Paxos、Raft、ZAB Paxos算法 莱斯利·兰伯特(Leslie Lamport)这位大牛在1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。如果你不知道这个人,那么如果你发表过Paper,就一定用过Latex,也是这位大牛的创作, 具体背景直接维基百科就可以,不深入讲解,直接讲Paxos算法。 分布式系统对fault tolorence 的一般解决方案是state machine replication。准确的描述Paxos应该是state machine replication的共识(consensus)算法。 Leslie Lamport写过一篇Paxos made simple的paper,没有一个公式,没有一个证明,这篇文章显然要比Leslie Lamport之前的关于Paxos的论文更加容易理解,但是