【深度学习】paddlepaddle——基于多层神经网络的图像识别案例
1 # 1、导包 2 import paddle.fluid as fluid 3 import paddle 4 import time 5 6 start = time.time() 7 8 9 def test_program(exe, feeder, program, fetch_list, reader): 10 """ 11 测试进程 12 :param exe:执行器 13 :param feeder: 数据与网络关系 14 :param program: 测试主进程 15 :param fetch_list: 需要执行之后返回的损失与准确率 16 :param reader: 测试reader 17 :return: 18 """ 19 # 训练次数 20 count = 0 21 # 整个测试集的总损失 22 sum_loss = 0 23 # 整个训练集的准确率 24 sum_acc = 0 25 for test_data in reader(): 26 test_avg_loss_value, test_acc_values = exe.run( 27 program=program, # 测试主进程 28 feed=feeder.feed(test_data), # 给测试喂数据 29 fetch_list=fetch_list # 需要执行之后返回的值