How to obtain RMSE out of lm result?
I know there is a small difference between $sigma and the concept of root mean squared error . So, i am wondering what is the easiest way to obtain RMSE out of lm function in R ? res<-lm(randomData$price ~randomData$carat+ randomData$cut+randomData$color+ randomData$clarity+randomData$depth+ randomData$table+randomData$x+ randomData$y+randomData$z) length(coefficients(res)) contains 24 coefficient, and I cannot make my model manually anymore. So, how can I evaluate the RMSE based on coefficients derived from lm ? Residual sum of squares: RSS <- c(crossprod(res$residuals)) Mean squared error: