keras

Edge2AI自动驾驶汽车教程

Deadly 提交于 2020-11-23 05:40:33
介绍 我们在前面介绍过Edge2AI自动驾驶汽车的解决方案,参见《 Edge2AI 自动驾驶 汽车: 在小型智能汽车上收集数据并准备数据管道》,《Edge2AI 自动驾驶 汽车: 构建Edge到AI数据管道》,《 Edge2AI 自动驾驶 汽车: 训练模型并将其部署到边缘 》 。在这里我们从实操教程的角度来看如何一步一步的构建Edge2AI自动驾驶汽车的应用,这个教程也是分成了三个部分,今天的内容是总体介绍这个教程。 自动驾驶汽车是Cloudera自动驾驶汽车的开源版本。这款无人驾驶微型汽车由3个摄像头,LiDAR和游戏控制器提供动力,并连接到Jetson TX2板上。TX2运行机器人操作系统(ROS)并控制汽车的运动。最终,如果我们有多辆汽车,我们可以在汽车上训练模型,然后将该模型发送给CDSW并执行联合学习。在本教程中,我们将汽车数据发送到云中的Hadoop HDFS。我们使用CDSW运行Keras训练模型,然后将模型保存到HDFS。该模型经过训练,可以从跑道上克隆人的驾驶行为,以基于中心摄像头框架预测转向角,该摄像头框架使用ROS控制汽车。最后,将模型重新部署到汽车中,以说明Edge To AI的生命周期。 学习目标 • 将MiNiFi C ++代理安装到Jetson TX2上 • 了解TX2的汽车传感器数据 • 构建用于Emi数据管道的ETL数据管道,以用于CEM •

『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成

早过忘川 提交于 2020-11-21 03:54:48
一、RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过实际上没什么区别,锚框生成的讲解见 『计算机视觉』Mask-RCNN_锚框生成 ):     rpn_feature_maps = [P2, P3, P4, P5, P6] 接下来,我们基于上述特征首先生成锚框的信息,包含每个锚框的 前景/背景得分信息 及每个锚框的 坐标修正信息 。 接前文主函数 ,我们初始化rpn model class的对象,并应用于各层特征: # Anchors if mode == "training": …… else: anchors = input_anchors # RPN Model, 返回的是keras的Module对象, 注意keras中的Module对象是可call的 rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, # 1 3 256 len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE) # Loop through pyramid layers layer_outputs = [] # list of lists for p