keras

Keras seems to hang after call to fit_generator

自作多情 提交于 2020-12-05 11:10:31
问题 I am trying to fit the Keras implementation of the SqueezeDet model to a new dataset. After making the appropriate changes to my config file, I tried to run the train script, but it seems to hang after the call to fit_generator() . As I get the following output: /anaconda/envs/py35/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype

Keras seems to hang after call to fit_generator

百般思念 提交于 2020-12-05 11:09:29
问题 I am trying to fit the Keras implementation of the SqueezeDet model to a new dataset. After making the appropriate changes to my config file, I tried to run the train script, but it seems to hang after the call to fit_generator() . As I get the following output: /anaconda/envs/py35/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype

从39个kaggle竞赛中总结出来的图像分割的Tips和Tricks

会有一股神秘感。 提交于 2020-12-04 13:24:39
作者: Derrick Mwiti 编译:ronghuaiyang 来源公众号:AI公园 导读 作者参加了39个Kaggle比赛,总结了非常多的技巧和经验,现在全部分享给大家。 想象一下,如果你能得到所有的tips和tricks,你需要去参加一个Kaggle比赛。我已经超过39个Kaggle比赛,包括: Data Science Bowl 2017 – $1,000,000 Intel & MobileODT Cervical Cancer Screening – $100,000 2018 Data Science Bowl – $100,000 Airbus Ship Detection Challenge – $60,000 Planet: Understanding the Amazon from Space – $60,000 APTOS 2019 Blindness Detection – $50,000 Human Protein Atlas Image Classification – $37,000 SIIM-ACR Pneumothorax Segmentation – $30,000 Inclusive Images Challenge – $25,000 现在把这些知识都挖出来给你们! 外部数据 使用 LUng Node Analysis Grand

[Tensorflow] TensorFlow之Hello World!(1)

ぃ、小莉子 提交于 2020-12-04 08:26:59
哇!今天挺开心的,30天的时间,19篇文章,2459人阅读,5313人次阅读!今天开通的原创标识,恩!除了激动,就是非常感谢大家的支持! 感谢大家的支持! 大家的支持! 的 支持! 支持! 持!我会继续努力的!我们一起进步!(./鞠躬!) ***** ** *** *** *****分割线 ********** *** ** *** 在学习TensorFlow之前,先给大家安利一波其他的几个库,主要有caffe,CNTK,keras,Theano,Torch,MaxNet。 总的来说,Caffe,CNTK这类是基于配置文件来定义模型,而Torch,Theano,Keras,TensorFlow是基于语言来定义模型。其中Torch是基于lua,一个比较小众的语言,不过也有了Python版。基于Python的有Theano,TensorFlow,Keras。Theano是和TensorFlow最像的一个,应该说TensorFlow是受到了Theano的启发而开发的,他们都是利用了tensor张量的思想。但是Theano是由LISA lab基于学术目的而开发的一套底层算法库,而TensorFlow是由google支持的。他俩主要区别还在于TensorFlow支持分布式编程。 下面有些网址可能打不开,这不是说链接无效~,而是需要“翻墙”,我觉得肯定有人不知道怎么办,就像我刚听说的时候

Keras(五)wide_deep模型

≯℡__Kan透↙ 提交于 2020-12-04 08:13:31
本文将介绍: wide_deep模型 函数API实现wide&deep模型 子类API实现wide&deep模型 wide&deep模型的多输入 wide&deep模型的多输出 一,wide_deep模型简介 详解 Wide&Deep 推荐框架 二,函数API实现wide&deep模型 1,函数API实现wide&deep代码如下 input = keras . layers . Input ( shape = x_train . shape [ 1 : ] ) hidden1 = keras . layers . Dense ( 30 , activation = 'relu' ) ( input ) hidden2 = keras . layers . Dense ( 30 , activation = 'relu' ) ( hidden1 ) # 复合函数: f(x) = h(g(x)) concat = keras . layers . concatenate ( [ input , hidden2 ] ) output = keras . layers . Dense ( 1 ) ( concat ) model = keras . models . Model ( inputs = [ input ] , outputs = [ output ] ) model .

给大家推荐:五个Python小项目,Github上的人气很高的

天大地大妈咪最大 提交于 2020-12-04 07:41:33
1.深度学习框架 Pytorch https://github.com/pytorch/pytorch PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能: ● 强大的 GPU 加速 Tensor 计算(类似 numpy) ● 构建基于 tape 的自动升级系统上的深度神经网络 ● 你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。 2.deepfake 的深度学习技术 Facewap https://github.com/deepfakes/faceswap deepfake 的深度学习技术,这款工具本来的用途是用来识别和交换图片、视频中人物脸部图像的工具 。该项目有多个入口,你需要做的事: ● 收集照片 ● 从原始照片中提取面部图像 ● 在照片上训练模型 ● 使用模型转换源代码 3.神经网络库 keras https://github.com/keras-team/keras Keras 是一个极简的、高度模块化的神经网络库,采用 Python(Python 2.7-3.5.)开发,能够运行在 TensorFlow 和 Theano 任一平台,好项目旨在完成深度学习的快速开发。 特性: ● 可以快速简单的设计出原型(通过总模块化、极简性、和可扩展性) ●

KeyError: ''val_loss" when training model

混江龙づ霸主 提交于 2020-12-02 10:06:45
问题 I am training a model with keras and am getting an error in callback in fit_generator function. I always run to epoch 3rd and get this error annotation_path = 'train2.txt' log_dir = 'logs/000/' classes_path = 'model_data/deplao_classes.txt' anchors_path = 'model_data/yolo_anchors.txt' class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw is_tiny_version = len(anchors)==6 # default setting if is

Removing layers from a pretrained keras model gives the same output as original model

允我心安 提交于 2020-12-02 07:12:40
问题 During some feature extraction experiments, I noticed that the 'model.pop()' functionality is not working as expected. For a pretrained model like vgg16, after using 'model.pop()' , model.summary() shows that the layer has been removed (expected 4096 features), however on passing an image through the new model, it results in the same number of features (1000) as the original model. No matter how many layers are removed including a completely empty model, it generates the same output. Looking

Removing layers from a pretrained keras model gives the same output as original model

懵懂的女人 提交于 2020-12-02 07:09:21
问题 During some feature extraction experiments, I noticed that the 'model.pop()' functionality is not working as expected. For a pretrained model like vgg16, after using 'model.pop()' , model.summary() shows that the layer has been removed (expected 4096 features), however on passing an image through the new model, it results in the same number of features (1000) as the original model. No matter how many layers are removed including a completely empty model, it generates the same output. Looking

Why Bert transformer uses [CLS] token for classification instead of average over all tokens?

强颜欢笑 提交于 2020-12-01 12:00:50
问题 I am doing experiments on bert architecture and found out that most of the fine-tuning task takes the final hidden layer as text representation and later they pass it to other models for the further downstream task. Bert's last layer looks like this : Where we take the [CLS] token of each sentence : Image source I went through many discussion on this huggingface issue, datascience forum question, github issue Most of the data scientist gives this explanation : BERT is bidirectional, the [CLS]