keras

Keras model.summary() object to string

痴心易碎 提交于 2020-12-27 08:26:21
问题 I want to write a *.txt file with the neural network hyperparameters and the model architecture. Is it possible to write the object model.summary() to my output file? (...) summary = str(model.summary()) (...) out = open(filename + 'report.txt','w') out.write(summary) out.close It happens that I'm getting "None" as you can see below. Hyperparameters ========================= learning_rate: 0.01 momentum: 0.8 decay: 0.0 batch size: 128 no. epochs: 3 dropout: 0.5 ------------------------- None

Getting TypeError: can't pickle _thread.RLock objects

泪湿孤枕 提交于 2020-12-26 09:09:11
问题 Read a number of similar questions, most of them mentioned that you shouldn't try to serialize an unserializable object. I am not able to understand the issue. I am able to save the model as .h5 file but that doesn't serve the purpose of what I am trying to do. Please Help! def image_generator(train_data_dir, test_data_dir): train_datagen = ImageDataGenerator(rescale=1/255, rotation_range = 30, zoom_range = 0.2, width_shift_range=0.1, height_shift_range=0.1, validation_split = 0.15) test

Getting TypeError: can't pickle _thread.RLock objects

人走茶凉 提交于 2020-12-26 09:07:02
问题 Read a number of similar questions, most of them mentioned that you shouldn't try to serialize an unserializable object. I am not able to understand the issue. I am able to save the model as .h5 file but that doesn't serve the purpose of what I am trying to do. Please Help! def image_generator(train_data_dir, test_data_dir): train_datagen = ImageDataGenerator(rescale=1/255, rotation_range = 30, zoom_range = 0.2, width_shift_range=0.1, height_shift_range=0.1, validation_split = 0.15) test

Why are variables defined with 'self' automatically given a ListWrapper() while inheriting from tf.keras.Model?

我的未来我决定 提交于 2020-12-26 04:04:08
问题 I am not familiar with ListWrapper() , but it is being applied to all list variables created with self when my class inherits from tf.keras.Model . https://www.tensorflow.org/api_docs/python/tf/keras/models/Model This is bad because it is causing an IndexError when I use it in certain functions, or even by just passing it through my Tensorflow model. (I am using eager execution) A small reproduction of the problem can be seen with this code: import tensorflow as tf class my_class(tf.keras

Tensorflow (.pb) format to Keras (.h5)

China☆狼群 提交于 2020-12-25 18:47:12
问题 I am trying to convert my model in Tensorflow (.pb) format to Keras (.h5) format to view post hoc attention visualisation. I have tried below code. file_pb = "/test.pb" file_h5 = "/test.h5" loaded_model = tf.keras.models.load_model(file_pb) tf.keras.models.save_keras_model(loaded_model, file_h5) loaded_model_from_h5 = tf.keras.models.load_model(file_h5) Can anyone help me with this? Is this even possible? 回答1: In the Latest Tensorflow Version (2.2) , when we Save the Model using tf.keras

Tensorflow (.pb) format to Keras (.h5)

﹥>﹥吖頭↗ 提交于 2020-12-25 18:47:09
问题 I am trying to convert my model in Tensorflow (.pb) format to Keras (.h5) format to view post hoc attention visualisation. I have tried below code. file_pb = "/test.pb" file_h5 = "/test.h5" loaded_model = tf.keras.models.load_model(file_pb) tf.keras.models.save_keras_model(loaded_model, file_h5) loaded_model_from_h5 = tf.keras.models.load_model(file_h5) Can anyone help me with this? Is this even possible? 回答1: In the Latest Tensorflow Version (2.2) , when we Save the Model using tf.keras

预训练模型迁移学习

烈酒焚心 提交于 2020-12-25 12:00:31
摘要: 本文通过使用Keras及一个预训练模型的实例,教你如何通过迁移学习快速简便地解决图像分类问题。 摘要:如何快速简便地解决图像分类问题呢?本文通过使用Keras及一个预训练模型的实例,教你如何通过迁移学习来解决这个问题。 深度学习 正在迅速成为人工智能应用开发的主要工具。在计算机视觉、自然语言处理和语音识别等领域都已有成功的案例。 深度学习擅长解决的一个问题是 图像分类 。图像分类的目标是根据一组合理的类别对指定的图片进行分类。从深度学习的角度来看,图像分类问题可以通过 迁移学习 的方法来解决。 本文介绍了如何通过迁移学习来解决图像分类的问题。 本文中所提出的实现方式是基于Python语言的Keras。 本文结构: 1)迁移学习 2)卷积神经网络 3)预训练模型的复用 4)迁移学习过程 5)深度卷积神经网络上的分类器 6)示例 7)总结 1、迁移学习 迁移学习在计算机视觉领域中是一种很流行的方法,因为它可以 建立精确的模型,耗时更短 。利用迁移学习,不是从零开始学习,而是从之前解决各种问题时学到的模式开始。这样,你就可以利用以前的学习成果(例如VGG、 Inception、MobileNet),避免从零开始。我们把它看作是站在巨人的肩膀上。 在计算机视觉领域中,迁移学习通常是通过使用 预训练模型 来表示的。预训练模型是在大型基准数据集上训练的模型,用于解决相似的问题

tensorflow:Your input ran out of data

二次信任 提交于 2020-12-25 09:35:14
问题 I am working on a seq2seq keras/tensorflow 2.0 model. Every time the user inputs something, my model prints the response perfectly fine. However on the last line of each response I get this: You: WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least steps_per_epoch * epochs batches (in this case, 2 batches). You may need to use the repeat() function when building your dataset. The "You:" is my last output, before

在数据科学方面,python和R有何区别?

前提是你 提交于 2020-12-25 09:11:14
  python和R都是当下比较流行的编程语言,拥有强大的生态系统和社区,受到大家的追捧和喜欢,那么在数据科学方面,python和R有何区别?我们来看看吧。   大多数深度学习研究都使用python完成的,因此Keras和PyTorch之类的工具具有python优先的开发,你可以在Keras的深度学习简介中了解这些主题。   python和R之上具有优势的另一个领域就是将模型部署到其他软件中,python是一种通用的编程语言,因此,如果您在使用python编写应用程序,包含基于python的模型的过程是无缝的。我们在python设计机器学习工作流中介绍了部署模型和构建python的数据工程管道。   python通常被认为是一种通用语言,具有易于理解的语法。   在R中进行大流的统计建模研究,有多种模型可供选择。R的另一个大窍门是使用Shiny轻松创建仪表板,对于没有太多技术经验的人来说,可以创建发布仪表板并进行分享。   R的功能在开发时考虑了统计学家的问题,从而赋予特定领域的优势,比如说数据可视化功能。   python最初是用于软件开发的编程语言,对于具有计算机科学或者软件开发的人员来说可以更容易使用,而且从其他语言过度到python要比R更加简单。 来源: oschina 链接: https://my.oschina.net/u/4408222/blog/4839636

AttributeError: module 'tensorflow' has no attribute 'get_default_graph'

与世无争的帅哥 提交于 2020-12-25 04:12:21
问题 I am doing some task related to image captioning and I have loaded the weights of inception model like this model = InceptionV3(weights='imagenet') But I am getting error like this: AttributeError: module 'tensorflow' has no attribute 'get_default_graph' What should I do? Please help. Here is the full output of above code. 1 . --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in () 1 # Load the inception v3 model ---->