矩阵分解

推荐系统相关算法(1):SVD

一世执手 提交于 2020-02-01 06:41:30
http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html 1. SVD简介 假如要预测Zero君对一部电影M的评分,而手上只有Zero君对若干部电影的评分和风炎君对若干部电影的评分(包含M的评分)。那么能预测出Zero君对M的评分吗?答案显然是能。最简单的方法就是直接将预测分定为平均分。不过这时的准确度就难说了。本文将介绍一种比这个最简单的方法要准上许多,并且也不算复杂的算法。 SVD(Singular Value Decomposition)的想法是 根据已有的评分情况,分析出评分者对各个因子的喜好程度以及电影包含各个因子的程度,最后再反过来根据分析结果预测评分 。电影中的因子可以理解成这些东西:电影的搞笑程度,电影的爱情爱得死去活来的程度,电影的恐怖程度。。。。。。SVD的想法抽象点来看就是将一个N行M列的评分矩阵R(R[u][i]代表第u个用户对第i个物品的评分),分解成一个N行F列的用户因子矩阵P(P[u][k]表示用户u对因子k的喜好程度)和一个M行F列的物品因子矩阵Q(Q[i][k]表示第i个物品的因子k的程度)。用公式来表示就是 R = P * T(Q) //T(Q)表示Q矩阵的转置 下面是将评分矩阵R分解成用户因子矩阵P与物品因子矩阵Q的一个例子。R的元素数值越大,表示用户越喜欢这部电影

推荐系统相关算法(1):SVD

十年热恋 提交于 2020-02-01 06:40:52
假如要预测Zero君对一部电影M的评分,而手上只有Zero君对若干部电影的评分和风炎君对若干部电影的评分(包含M的评分)。那么能预测出Zero君对M的评分吗?答案显然是能。最简单的方法就是直接将预测分定为平均分。不过这时的准确度就难说了。本文将介绍一种比这个最简单的方法要准上许多,并且也不算复杂的算法。 SVD(Singular Value Decomposition)的想法是 根据已有的评分情况,分析出评分者对各个因子的喜好程度以及电影包含各个因子的程度,最后再反过来根据分析结果预测评分 。电影中的因子可以理解成这些东西:电影的搞笑程度,电影的爱情爱得死去活来的程度,电影的恐怖程度。。。。。。SVD的想法抽象点来看就是将一个N行M列的评分矩阵R(R[u][i]代表第u个用户对第i个物品的评分),分解成一个N行F列的用户因子矩阵P(P[u][k]表示用户u对因子k的喜好程度)和一个M行F列的物品因子矩阵Q(Q[i][k]表示第i个物品的因子k的程度)。用公式来表示就是 R = P * T(Q) //T(Q)表示Q矩阵的转置 下面是将评分矩阵R分解成用户因子矩阵P与物品因子矩阵Q的一个例子。R的元素数值越大,表示用户越喜欢这部电影。P的元素数值越大,表示用户越喜欢对应的因子。Q的元素数值越大,表示物品对应的因子程度越高。分解完后,就能利用P,Q来预测Zero君对《七夜》的评分了

程序员的能力矩阵

孤人 提交于 2020-02-01 00:30:05
转载自:https://blog.csdn.net/u012635648/article/details/72779050 原文:https://sijinjoseph.com/programmer-competency-matrix/ 注意:每个层次的知识都是渐增的,位于层次n,也蕴涵了你需了解所有低于层次n的知识。 计算机科学 Computer Science 2 n 2^n 2 n (level 0) n 2 n^2 n 2 (level 1) n n n (level S2) l o g ( n ) log(n) l o g ( n ) (level 3) 备注 数据结构 不知道数组和链表的差异 能够解释和使用数组,链表,字典等,并且能够用于实际的编程任务。 了解基本数据结构时间和空间的这种,比如数组vs链表,能够解释如何实现哈希表和处理冲突,了解优先队列及其实现 高等的数据结构的知识,比如B-树、二顶堆、斐波那契堆、AVL树、红黑树、伸展树、跳跃表以及前缀树等。 算法 不能够找出一个数组各数的平均值(这令人难以置信,但是我的确在应聘者中遇到过) 基本的排序,搜索和数据的遍历和检索算法 树、图、简单的贪婪算法和分而治之算法,能够适度了解矩阵该层的含义 能够辨识和编写动态规划方案,良好的图算法知识,良好的数值估算的知识,能够辨别NP问题等 与优秀的程序员一起工作是一件快事

PA=LU

雨燕双飞 提交于 2020-01-30 22:49:39
P A = L U PA=LU P A = L U 对矩阵 A A A 做 L U LU L U 分解(考虑行交换) A = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} A = ⎣ ⎢ ⎢ ⎡ ​ a 1 1 ​ a 2 1 ​ a 3 1 ​ a 4 1 ​ ​ a 1 2 ​ a 2 2 ​ a 3 2 ​ a 4 2 ​ ​ a 1 3 ​ a 2 3 ​ a 3 3 ​ a 4 3 ​ ​ a 1 4 ​ a 2 4 ​ a 3 4 ​ a 4 4 ​ ​ ⎦ ⎥ ⎥ ⎤ ​ 第一步,将矩阵 A A A 的第一列元素 a 11 , a 21 , a 31 , a 41 a_{11},a_{21},a_{31},a_{41} a 1 1 ​ , a 2 1 ​ , a 3 1 ​ , a 4 1 ​

多维数组和矩阵的基础题型

蓝咒 提交于 2020-01-29 16:53:01
本文主要介绍关于多维数组和矩阵的题型,从基础开始逐步深入。 一、顺时针打印矩阵 如下图: 解题方法:把矩阵分解为多个矩形框,从最外层开始打印,每次循环打印一个矩形框,一个循环里用四个while循环打印,每个while循环打印一个矩形的一条边。(用矩阵框的两个顶点进行循环的控制,当左上角的行号小于右下角的行号就退出外层循环) 代码如下: public class 顺时针打印矩阵 { public static void main ( String [ ] args ) { int [ ] [ ] a = { { 1 , 2 , 3 , 4 } , { 5 , 6 , 7 , 8 } , { 9 , 10 , 11 , 12 } , { 13 , 14 , 15 , 16 } } ; print ( a ) ; } private static void print ( int [ ] [ ] a ) { int leftUpRow = 0 ; int leftUpCol = 0 ; int rightLowRow = a . length - 1 ; int rightLowCol = a [ 0 ] . length - 1 ; while ( leftUpRow <= rightLowRow ) { int row = leftUpRow ; int col =

朝花夕拾之Matlab矩阵运算

不羁岁月 提交于 2020-01-29 15:21:44
矩阵运算 1. 加、减运算 运算符:“+”和“-”分别为加、减运算符。 运算规则:对应元素相加、减,即按线性代数中矩阵的“十”,“一”运算进行。 例1-22 >>A=[1, 1, 1; 1, 2, 3; 1, 3, 6] >>B=[8, 1, 6; 3, 5, 7; 4, 9, 2] >>A+B=A+B >>A-B=A-B 结果显示:A+B= 9 2 7 4 7 10 5 12 8 A-B= -7 0 -5 -2 -3 -4 -3 -6 4 2. 乘法 运算符:* 运算规则:按线性代数中矩阵乘法运算进行,即放在前面的矩阵的各行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。 1.两个矩阵相乘 例1-23 >>X= [2 3 4 5; 1 2 2 1]; >>Y=[0 1 1; 1 1 0; 0 0 1; 1 0 0]; Z=X*Y 结果显示为: Z= 8 5 6 3 3 3 2.矩阵的数乘:数乘矩阵 上例中:a=2*X 则显示:a = 4 6 8 10 2 4 4 2 向量的点乘(内积):维数相同的两个向量的点乘。 数组乘法: A.*B表示A与B对应元素相乘。 3 .向量点积 函数 dot 格式 C = dot(A,B) %若A、B为向量,则返回向量A与B的点积,A与B长度相同;若为矩阵,则A与B有相同的维数。 C = dot(A,B,dim) %在dim维数中给出A与B的点积

转:奇异值分解与特征值分解

偶尔善良 提交于 2020-01-29 04:31:44
文章摘自: http://blog.jobbole.com/88208/ 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1) 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。我这里引用了一些参考文献中的内容来说明一下。首先,要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵: 它其实对应的线性变换是下面的形式: 因为这个矩阵M乘以一个向量(x,y)的结果是: 上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子: 它所描述的变换是下面的样子: 这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示),在图中,蓝色的箭头是一个最 主要的

sift算法原理解析

感情迁移 提交于 2020-01-28 21:41:22
尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) Just For Fun 转自: http://blog.csdn.net/zddblog/article/details/7521424 对于初学者,从 David G.Lowe 的论文到实现,有许多鸿沟,本文帮你跨越。 1 、 SIFT 综述 尺度不变特征转换 (Scale-invariant feature transform 或 SIFT) 是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在 1999 年所发表, 2004 年完善总结。 其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、 3D 模型建立、手势辨识、影像追踪和动作比对。 此算法有其专利,专利拥有者为英属哥伦比亚大学。 局部影像特征的描述与侦测可以帮助辨识物体, SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT 特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要 3 个以上的 SIFT 物体特征就足以计算出位置与方位

单目视觉标定原理

时光怂恿深爱的人放手 提交于 2020-01-26 02:44:30
在计算机视觉中,通过相机标定能够获取一定的参数,其原理是基于三大坐标系之间的转换和摄像机的畸变参数矩阵。在实验中经常用张正友标定发,进行摄像机标定,获取到内参数矩阵和外参数矩阵以及畸变参数矩阵。在应用中要区分三者作用。这也是在程序中函数输入量。 一、三大坐标系 在计算机视觉中,利用图像中目标的二维信息获取目标的三维信息,肯定需要相机模型的之间转化。 1、图像坐标系 在计算机系统中,描述图像的大小是像素,比如图像分辨率是1240*768.也就就是以为图像具矩阵rows是1024,cols是768.那图像的原点是在图像的左上角。 以图像左上角为原点建立以像素为单位的直接坐标系u-v。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数。这是像素坐标,而不是物理坐标,为了后续的模型转换,有必要建立图像坐标系。 图像坐标系是以图像中心为原点,X轴和u轴平行,Y轴和v轴平行。 dx和dy标示图像中每个像素在X轴和Y轴的物理尺寸,其实就是换算比例。比如图像大小是1024*768,图像坐标系x-y中大小为19*17.那么dx就是19/1024 . 则图像中的每个像素在u-v坐标系中的坐标和在x-y坐标系中的坐标之间都存在如下的关系: (上述公式中我们假设物理坐标系中的单位为毫米,那么dx的的单位为:毫米/像素。那么x/dx的单位就是像素了,即和u的单位一样都是像素) 为了使用方便

张量网络学习笔记[1]

前提是你 提交于 2020-01-25 17:23:05
0. 简介与前置知识 本笔记着重学习Zhao Qibin教授等发表的"关于利用张量网络缩减维度和大规模优化"(Tensor Networks for dimensionality Reduction and Large-Scale Optimization)等张量网络相关的内容. 就目前来看, 网上并没有公开资源, 而前述学术文章的官方中文据悉仍在制作中. 本笔记视作笔者自己的一个自学概要, 其目的为加深理解, 方便回顾. 同时, 也希望能用我自己的理解串联有关内容, 给大家呈现更清晰地知识布局. 本笔记将不是一个完整的翻译作品, 而是一个根据自己理解有选择性的, 摘要性的翻译与整理工作. 希望为互联网上, 特别是中文圈内学习张量领域的热情贡献自己的一份力量. 由于笔者写过关于张量综述的笔记, 很多入门内容就不重复记述. 若有必要, 会提及"笔记系列"以指代该系列. 如果读者不理解什么是张量(tensor) 不理解什么是CP, TUCKER, KRONECKER及KHATRI-RAO乘法, 以及张量秩, mode-n乘法以及低秩分解的基本知识, 欢迎查阅我的另外一个笔记系列, 张量学习笔记. (笔者也经常查阅, 如果不熟悉大可放心. 只要学过, 随学随查即可) 为了方便顺应原作对公式的引用及方便大家查阅原书, 会将公式在原书内的tag写出 0.1. 本文所用图表与符号