Faster R-CNN、SSD和YOLO
最近做一些关于Faster R-CNN、SSD和YOLO模型选择和优化的项目,之前只了解Faster R-CNN系列目标检测方法,于是抽空梳理一下这几个检测模型。先上两张简单的精确度和运算量的对比图,有个粗略的了解,虽然图中缺了YOLO,参考价值仍然很大: 下面开始分别详述吧~ Faster R-CNN架构 传统目标检测方法大致分为如下三步: 深度学习特别是CNN的出现使得上述第二三步可以合并在一起做。Faster R-CNN步骤: (1)由输入图片产生的区域候选 (2)最后一层卷积输出的所有通道 (2)最后一层卷积输出的所有通道 pooling=> + (3)ROI pooling 候选区的产生 RPN的核心思想是使用卷积神经网络直接产生region proposal,使用的方法本质上就是滑动窗口。RPN的设计比较巧妙,RPN只需在最后的卷积层上滑动一遍,因为anchor机制和边框回归可以得到多尺度、多长宽比的region proposal,3*3滑窗对应的每个特征区域同时预测输入图像3种尺度(128,256,512),3种长宽比(1:1,1:2,2:1)的region proposal,这种映射的机制称为anchor: RPN 利用基网络对图像用一系列的卷积和池化操作进行特征提取,得到原始的feature maps(灰色区域),然后在原始的feature