CNN网络结构的发展:从LeNet到EfficientNet
CNN基本部件介绍 1. 局部感受野 在图像中局部像素之间的联系较为紧密,而距离较远的像素联系相对较弱。因此,其实每个神经元没必要对图像全局进行感知,只需要感知局部信息,然后在更高层局部信息综合起来即可得到全局信息。卷积操作即是局部感受野的实现,并且卷积操作因为能够权值共享,所以也减少了参数量。 2. 池化 池化是将输入图像进行缩小,减少像素信息,只保留重要信息,主要是为了减少计算量。主要包括最大池化和均值池化。 3. 激活函数 激活函数的用是用来加入非线性。常见的激活函数有sigmod, tanh, relu,前两者常用在全连接层,relu常见于卷积层 4. 全连接层 全连接层在整个卷积神经网络中起分类器的作用。在全连接层之前需要将之前的输出展平 经典网络结构 1. LeNet5 由两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用maxpooling 2. AlexNet 模型共八层(不算input层),包含五个卷积层、三个全连接层。最后一层使用softmax做分类输出 AlexNet使用了ReLU做激活函数;防止过拟合使用dropout和数据增强;双GPU实现;使用LRN 3. VGG 全部使用3×3卷积核的堆叠,来模拟更大的感受野,并且网络层数更深。VGG有五段卷积,每段卷积后接一层最大池化。卷积核数目逐渐增加。 总结:LRN作用不大