资源论文非系统论文,NLP圈同行评审存在的六大固化误区!
编译 | 王雪佩 编辑 | 丛 末 NLP中的大多数成功案例都是关于监督学习或半监督学习的。从根本上说,这意味着我们的解析器、情感分类器、QA系统和其他一切都和训练数据一样好。基于这一事实,数据和模型工程,对于 NLP 进一步的发展来说同样重要。这就是为什么顶级会议 ACL 通常还专设了一个“资源和评估”通道,并颁发最佳资源论文奖。 然而,创建模型和资源这两项任务所需要的技能集并不相同,往往也来自不同的领域,这两个领域的研究者往往也对“论文应该是怎样的”抱有不同的期望。这就使得审稿人的工作进入一个雷区:如果期望得到一个橘子结果得到的却是一个苹果,那么这个苹果看起来就是错的。以双方最大的善意来看,论文被拒绝的原因可能并非论文实际存在任何缺陷,而是它的基本方法论“不合适”。 对于这一点比较失望的作者们在线上或线下展开的讨论,是这篇文章的写作缘由。有一件事很明显:如果作者和审稿人不能就“论文应该是怎么样的”达成一致,那么提交论文就是浪费彼此的时间。作者希望,本文能帮助那些使用数据的人,更好地理解那些制作数据的人,并对他们的论文做出更好的评价。 1 同行评审对资源论文的六大误区 让我们从消除一些关于资源论文的误区开始。 注:下面所有引用都来自ACL审稿人对论文的真实评论! 误区1:资源论文不是科学