ElasticSearch

How to export pandas data to elasticsearch?

一笑奈何 提交于 2020-12-29 09:36:47
问题 It is possible to export a pandas dataframe data to elasticsearch using elasticsearch-py . For example, here is some code: https://www.analyticsvidhya.com/blog/2017/05/beginners-guide-to-data-exploration-using-elastic-search-and-kibana/ There are a lot of similar methods like to_excel , to_csv , to_sql . Is there a to_elastic method? If no, where should I request it? 回答1: The following script works for localhost: import numpy as np import pandas as pd df = pd.DataFrame(np.random.randint(0,100

How to export pandas data to elasticsearch?

ⅰ亾dé卋堺 提交于 2020-12-29 09:36:26
问题 It is possible to export a pandas dataframe data to elasticsearch using elasticsearch-py . For example, here is some code: https://www.analyticsvidhya.com/blog/2017/05/beginners-guide-to-data-exploration-using-elastic-search-and-kibana/ There are a lot of similar methods like to_excel , to_csv , to_sql . Is there a to_elastic method? If no, where should I request it? 回答1: The following script works for localhost: import numpy as np import pandas as pd df = pd.DataFrame(np.random.randint(0,100

一个好习惯——每年至少更新一次简历

落爺英雄遲暮 提交于 2020-12-28 15:47:30
一个好习惯——每年至少更新一次自己的简历,而不是等到找工作才写简历。 1、简历是随时间、产品开发或项目经历积累出来的,不是现写的 项目结束或者产品发布后的当天晚上是最佳时机!!越往后,记忆曲线决定信息丢失率越高! 一页 ppt 或者一页A4纸肯定就能介绍清楚,如果还不够,说明:还需要提炼。 如果:写不出来东西,你该反思了?? 这个项目一点收获没有吗? 架构能力、设计、开发、运维、管理提升的点都是可以写的点。 2、人的记忆周期是有限的,总结要写出来,单靠脑子不灵 哪怕你负责的项目、你带过的团队,三年、五年后,你可能会连项目名都不记得了。 别拖延,哪怕你有拖延症。 面试别人的时候,问到一个项目经历,经常收到的回复:这个项目比较久了,忘记了。 我一般会进一步思考:忘记了可以不写,但一旦写了,你就得能讲出来!!这很重要。 所谓:重点突出、详略得当也大抵不过如此! 3、简历准备重点突出什么,你就积累什么 包含不限制: 第一:项目背景(概述); 第二:使用技术; 第三:我负责内容(团队人数)和工作亮点(最多三个)。 4、写完后,要自己能复述出来 咱们程序员通病:写代码可以,和测试吵架可以。 但,你让我概括讲出来我做的项目?不行,不会讲。 能写出来已经很不错,但再能讲出来,就更厉害了。 现在不讲,面试就很容易支支吾吾,影响整体面试体验。 5、简历的确需要常写常新 找到靠谱的模板,至少每年更新一次

How to create request body for Python Elasticsearch mSearch

ぐ巨炮叔叔 提交于 2020-12-28 13:22:28
问题 I'm trying to run a multi search request on the Elasticsearch Python client. I can run the singular search correctly but can't figure out how to format the request for a msearch. According to the documentation, the body of the request needs to be formatted as: The request definitions (metadata-search request definition pairs), as either a newline separated string, or a sequence of dicts to serialize (one per row). What's the best way to create this request body? I've been searching for

Exceptionless 本地部署

淺唱寂寞╮ 提交于 2020-12-28 04:27:11
copy to:https://www.cnblogs.com/uptothesky/p/5864863.html 本地部署官方wiki .NET 4.6.1 这个因为我装了VS2015,就没有单独再装了 Java JDK 1.8+ 安装完后还需配置下Java环境,系统变量添加:JAVA_HOME 对应 C:\Program Files\Java\jdk1.8.0_102 是安装jdk的目录,用户变量Path 中添加 %JAVA_HOME%\bin; 配置完成后打开cmd,运行 java - version 如果报错的话有很多种可能,搜索一下会有解决方案,我的就是在C:\Windows\System32 目录下把java.exe改名成javaa.exe,再次cmd运行就成功了 IIS 8+ 这个感觉不是强制的,我win7的IIS 7.5也是可以的 ElasticSearch 1.7.5 ( Elasticsearch 2.x is not yet supported ) 到连接地址去下载1.7.5版本,人家已经说明2.x的版本不支持,找这个历史版本得翻好几页,大概在第7页左右,直接给个下载连接: elasticsearch-1.7.5 ,下载完后解压 下载最新的 latest Exceptionless release artifact ZIP ,下载后解压

How to query an Elasticsearch index using Pyspark and Dataframes

喜欢而已 提交于 2020-12-28 00:04:55
问题 Elasticsaerch's documentation only covers loading a complete index to Spark. from pyspark.sql import SQLContext sqlContext = SQLContext(sc) df = sqlContext.read.format("org.elasticsearch.spark.sql").load("index/type") df.printSchema() How can you perform a query to return data from an Elasticsearch index and load them to Spark as a DataFrame using pyspark? 回答1: Below is how I do it. General environment settings and command: export SPARK_HOME=/home/ezerkar/spark-1.6.0-bin-hadoop2.6 export

How to query an Elasticsearch index using Pyspark and Dataframes

六眼飞鱼酱① 提交于 2020-12-28 00:04:25
问题 Elasticsaerch's documentation only covers loading a complete index to Spark. from pyspark.sql import SQLContext sqlContext = SQLContext(sc) df = sqlContext.read.format("org.elasticsearch.spark.sql").load("index/type") df.printSchema() How can you perform a query to return data from an Elasticsearch index and load them to Spark as a DataFrame using pyspark? 回答1: Below is how I do it. General environment settings and command: export SPARK_HOME=/home/ezerkar/spark-1.6.0-bin-hadoop2.6 export

How to query an Elasticsearch index using Pyspark and Dataframes

倾然丶 夕夏残阳落幕 提交于 2020-12-28 00:03:20
问题 Elasticsaerch's documentation only covers loading a complete index to Spark. from pyspark.sql import SQLContext sqlContext = SQLContext(sc) df = sqlContext.read.format("org.elasticsearch.spark.sql").load("index/type") df.printSchema() How can you perform a query to return data from an Elasticsearch index and load them to Spark as a DataFrame using pyspark? 回答1: Below is how I do it. General environment settings and command: export SPARK_HOME=/home/ezerkar/spark-1.6.0-bin-hadoop2.6 export

ElasticSearch - cross_fields multi match with fuzzy search

二次信任 提交于 2020-12-27 17:04:25
问题 I have documents that represent users. They have fields name and surname . Let's say I have two users indexed - Michael Jackson and Michael Starr. I want these sample searches to work: Michael => { Michael Jackson , Michael Starr } Jack Mich => { Michael Jackson } (incomplete words and reversed order) Michal Star => { Michael Starr } (fuzzy search) I tried different queries and got the best results from multi_match query with cross_fields type. There are 2 problems though: It only finds

ElasticSearch - cross_fields multi match with fuzzy search

混江龙づ霸主 提交于 2020-12-27 17:04:12
问题 I have documents that represent users. They have fields name and surname . Let's say I have two users indexed - Michael Jackson and Michael Starr. I want these sample searches to work: Michael => { Michael Jackson , Michael Starr } Jack Mich => { Michael Jackson } (incomplete words and reversed order) Michal Star => { Michael Starr } (fuzzy search) I tried different queries and got the best results from multi_match query with cross_fields type. There are 2 problems though: It only finds