第十一章-CRF的奇妙之处
上篇中,我们了解到HMM的相关知识,并且知道HMM属于概率有向图模型,接下来,让我们一起学习总结概率无向图模型――条件随机场(Conditional Random Field, CRF)。 概率无向图模型又称为马尔可夫随机场,是一个可以由无向图表示的联合概率分布。 \[ 设有联合概率分布P(Y),由无向图G=(V,E)表示,V表示结点集合,E表示边集合,\\在图G中,结点表示随机变量,边表示随机变量之间的依赖关系。如果联合概率分布P(Y)满足\\成对、局部或全局马尔可夫性,就称此联合概率分布为概率无向图模型或马尔可夫随机场。 \] 如图上,一共有10个结点(即10个随机变量),任意找两个没有边直接连接的结点,假设有两个随机变量(u,v)没有边相连,剩下的8个随机变量记为O,当给定O时,u和v是独立的,即P(u,v|O)=P(u|O)P(v|O)。 如上图,任意找一个结点v,与v有边相连的所有结点记为W,其余5个结点记为O,当给定W时,v和O是独立的,即P(v,O|W)=P(v|W)P(O|W)。 一共有8个结点(即有8个随机变量),取中间两个随机变量记为集合C,当将集合C从图中删掉之后,那么剩下的6个结点分成了两个部分,可知左边的3个结点和右边的3个结点没有任何边将它们相连,当给定C时,A和B是独立的,即P(A,B|C)=P(A|C)P(B|C)。 注意