dagger

放弃dagger?Anrdoi依赖注入框架koin

Deadly 提交于 2020-08-17 03:37:54
Koin 是什么 Koin 是为 Kotlin 开发者提供的一个实用型轻量级依赖注入框架,采用纯 Kotlin 语言编写而成,仅使用功能解析,无代理、无代码生成、无反射。 官网地址 优势 依赖注入好处 增加开发效率、省去重复的简单体力劳动 首先new一个实例的过程是一个重复的简单体力劳动,依赖注入可以把new一个实例的工作做了,因此我们把主要精力集中在关键业务上、同时也能增加开发效率上。 代码更具可读性 省去写单例的方法 解耦 假如不用依赖注入的话,一个类的new代码是非常可能充斥在app的多个类中的,假如该类的构造函数发生变化,那这些涉及到的类都得进行修改。 和dagger相比 编译生成的代码少 编译时间少 上手简单 使用方法 1.添加依赖 // Add Jcenter to your repositories if needed repositories { jcenter() } dependencies { // Koin for Android compile "org.koin:koin-android:$koin_version" } 2.比如创建一个HelloRepository来提供一些数据: interface HelloRepository { fun giveHello(): String } class HelloRepositoryImpl() :

How to MVP in Dagger Hilt?

﹥>﹥吖頭↗ 提交于 2020-08-10 19:45:45
问题 I can't compile the code using a Model View Presenter(MVP) Hilt approach. I get this error: /MotionPoC/app/build/generated/source/kapt/debug/com/aria/motionpoc/di/MotionApp_HiltComponents.java:145: error: [Dagger/MissingBinding] com.aria.motionpoc.coupon.MainActivity cannot be provided without an @Inject constructor or an @Provides-annotated method. This type supports members injection but cannot be implicitly provided. The code itself: MainActivity.kt @AndroidEntryPoint class MainActivity :

How do I make Dagger 1 and Dagger 2 coexist together in one Android project?

你离开我真会死。 提交于 2020-08-09 18:51:28
问题 We have a huge codebase to migrate from dagger 1 to dagger 2 but we would like to do it step by step. For that we were thinking to have both versions as our project dependency and do the migration module by module. But we were unable to make it work. This is the article we referred https://fernandocejas.com/2016/08/03/android-dagger-1-and-2-living-together/ but without any luck or is there any other way? Thanks. 回答1: There's no other way. When trying to use both Dagger versions together, you

How do I make Dagger 1 and Dagger 2 coexist together in one Android project?

蹲街弑〆低调 提交于 2020-08-09 18:50:59
问题 We have a huge codebase to migrate from dagger 1 to dagger 2 but we would like to do it step by step. For that we were thinking to have both versions as our project dependency and do the migration module by module. But we were unable to make it work. This is the article we referred https://fernandocejas.com/2016/08/03/android-dagger-1-and-2-living-together/ but without any luck or is there any other way? Thanks. 回答1: There's no other way. When trying to use both Dagger versions together, you

How do I make Dagger 1 and Dagger 2 coexist together in one Android project?

陌路散爱 提交于 2020-08-09 18:50:30
问题 We have a huge codebase to migrate from dagger 1 to dagger 2 but we would like to do it step by step. For that we were thinking to have both versions as our project dependency and do the migration module by module. But we were unable to make it work. This is the article we referred https://fernandocejas.com/2016/08/03/android-dagger-1-and-2-living-together/ but without any luck or is there any other way? Thanks. 回答1: There's no other way. When trying to use both Dagger versions together, you

How to prevent Hilt from picking dependency from a library?

a 夏天 提交于 2020-08-09 08:17:06
问题 Okay, let's make this simple. I have created a simple library called my-network-library with two classes in it. First one is a Hilt module called BaseNetworkModule @Module @InstallIn(ApplicationComponent::class) object BaseNetworkModule { // Client @Singleton @Provides fun provideOkHttpClient(): OkHttpClient { return OkHttpClient.Builder() // my default okhttp setup goes here .build() } } and the second one is a simple class. class MyAwesomeClass { fun doMagic() { // magic code goes here } }

量子纠错码——Clifford group

好久不见. 提交于 2020-08-08 11:13:40
Clifford code Clifford group是什么? 简单的公式来表达,就是 \(Cl_{n}=\left\{U: U P_{n} U^{\dagger} \in P_{n}\right\}\) 。 用语言来描述,就是对一个泡利施加一个U操作,然后还是一个泡利。 首先,所有的泡利都属于 \(Cl_n\) ,因为泡利矩阵自己相乘还是泡利。 但也有非泡利的矩阵在这里面,比如H也属于clifford, \(HXH=Z\) ,$ HZH=X$ 另一个例子是 \(S=\sqrt{Z}=\left(\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right)\) \(SZS^{\dagger}=ZSS^{\dagger}=Z\) \(SXS^{\dagger}=iY\) 但是也并非所有的操作都属于 \(Cl_n\) ,比如T门, \(TZT^{\dagger}=ZTT^{\dagger}=ZS \notin P\) 对于单量子比特来说: \(Cl_1=\langle X,Z,H,S\rangle\) 但是我们不仅只有单比特,对于多比特,他不是简单的 \(Cl_1^{\otimes n}\) ,因为多比特有纠缠。 比如 \(SWAP_{ij}\) ,将第i个和第j个交换一下,这很明显操作完了还是一个泡利,属于 \(Cl_n\) , \(