《Deep Convolutional Network Cascade for Facial Point Detection》复现
1.引言 锵锵锵,好久不见,我又肥来了,前一段时间上网找资料的时候偶然发现一篇关于人脸关键点检测的文章,应该说这篇论文是关键点检测的看山鼻祖,论文主页:http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm,一篇中文翻译的博客:基于DCNN的人脸特征点定位。我大概看了一遍发现这个论文的思路对我有很大的帮助,同时整体神经网络结构的搭建也不算太复杂,因此决定将论文复现一下看看效果,同时我对论文提出的网络也进行了一点细微的修改,但是中间有点事所以这个计划在进行了一半后就搁浅了,直到这几天才将后续的部分完成,让我们一起看一看实现的过程。 我的训练环境是使用Python3.6,Tensorflow—gpu,CUDA9.1,CUDNN7版本,每个网络进行1000epoch训练,最终训练效果如下图所示,红色点是网络预测的坐标点,蓝色点为数据集中给出的坐标点,该网络的预测效果相对来说还是可以的,但是在嘴角部分的预测还有一定差距。 2.网络结构 论文提出的网络整体思想是将网络分为两个模块,第一模块是通过适应openCV、faster rcnn或者训练的其他网络将原始图片裁剪出人脸部分用作第二模块关键点检测的数据,由于我使用的是Kaggle上提供的人脸关键点定位数据集,因此我没有使用第一模块