pyhanlp 分词与词性标注
pyhanlp中的分词器简介 pyhanlp实现的分词器有很多,同时pyhanlp获取hanlp中分词器也有两种方式 第一种是直接从封装好的hanlp类中获取,这种获取方式一共可以获取五种分词器,而现在默认的就是第一种维特比分词器 维特比 (viterbi):效率和效果的最佳平衡。也是最短路分词,HanLP最短路求解采用Viterbi算法 双数组trie树 (dat):极速词典分词,千万字符每秒(可能无法获取词性,此处取决于你的词典) 条件随机场 (crf):分词、词性标注与命名实体识别精度都较高,适合要求较高的NLP任务 感知机 (perceptron):分词、词性标注与命名实体识别,支持在线学习 N最短路 (nshort):命名实体识别稍微好一些,牺牲了速度 第二种方式是使用JClass直接获取java类,然后使用。这种方式除了获取上面的五种分词器以外还可以获得一些其他分词器,如NLP分词器,索引分词,快速词典分词等等 两种使用方式的对比 第一种是使用作者给的HanLP直接获取分词器,直接segment() 会获取 默认的标准分词器也就是维特比分词器,也**可以使用newSegment函数,传入上面的分词器英文名称来获取新的分词器,如使用 HanLP.newSegment("crf") 来获取CRF分词器。**第二种方式是使用JClass从java中获取我们想要的类