cmos电平

别人的面试题

旧时模样 提交于 2019-12-03 15:30:35
1、单片机的最小系统?内部主要结构? 电源、晶振、复位 2、单片机的IO口有什么作用?驱动能力?上下拉电阻的作用? 用来定义相应I/O口位的输入输出状态和方式 1)提高驱动能力: 例如,用单片机输出高电平,但由于后续电路的影响,输出的高电平不高,就是达不到VCC,影响电路工作。所以要接上拉电阻。下拉电阻情况相反,让单片机引脚输出低电平,结果由于后续电路影响输出的低电平达不到GND,所以接个下拉电阻。 2)在单片机引脚电平不定的时候,让后面有一个稳定的电平: 例如上面接下拉电阻的情况下,在单片机刚上电的时候,电平是不定的,还有就是如果你连接的单片机在上电以后,单片机引脚是输入引脚而不是输出引脚,那这时候的单片机电平也是不定的,R18的作用就是如果前面的单片机引脚电平不定的话,强制让电平保持在低电平。 3、下列定义变量方法错误的是 int ab_2 int _2a3 int 2_ab int ab_2 变量名不能以数字开头 4、写出下列代码输出内容 #include <.h> int main(int argc, char const *argv[]) { int a,b,c,d; a = 10; b = a ++; c = ++ a; d = 10 * a ++; printf("b:%d,c:%d,d:%d\n",b,c,d); return 0; } b:10,c:12,d

2019年11月4日

不打扰是莪最后的温柔 提交于 2019-12-03 11:30:27
  一、推挽输出: 可以输出高,低电平 ,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。    当一个三级管开通的时候另一个关断,根据B端来确定, 这是一个比较器 当a>b时B 输出为0;当a<b时B输出为1 当B为1时上边三极管导通,下边关闭; 当B为0时下边三极管导通,上边关闭。 此为推挽    二、开漏输出: 当B为1时,这个管子导通,OUT接地,输出为0;当B为0时管子不导通,OUT接VCC输出为1. 开漏输出: 一般只能输出低电平 ,输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内). 开漏形式的电路有以下几个 特点 : 利用外部电路的驱动能力,减少IC(集成电路,也称芯片)内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很小的栅极驱动电流。 一般来说

上下拉电阻

怎甘沉沦 提交于 2019-11-29 18:39:28
上下拉电阻定义 1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理 2、上拉是对器件注入电流,下拉是输出电流 3、弱强只是上拉电阻的阻值不同,没有什么严格区分 4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道 二、拉电阻作用: 1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。 2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定! 3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,其作用主要是确保某端口常态时有确定电平:用法示例:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。 4、上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流。 5

什么是施密特触发器(Schmitt Trigger)?

筅森魡賤 提交于 2019-11-28 02:37:57
http://hi.baidu.com/hieda/blog/item/c996d9cc5d1a8c1400e92877.html 施密特触发器( Schmitt Trigger ),简单的说就是 具有滞后特性的数字传输门 。 (一)施密特触发器结构举例 (二)施密特触发器具体分析 (三)施密特触发器电路用途 (四)施密特触发器 相关部分总结 (五)附:用555定时器构成施密特触发器 用555定时器构成多谐振荡器 Sometimes an input signal to a digital circuit doesn't directly fit the description of a digital signal. For various reasons it may have slow rise and/or fall times, or may have acquired some noise that could be sensed by further circuitry. It may even be an analog signal whose frequency we want to measure. All of these conditions, and many others, require a specialized circuit that will

数字电平标准 TTL CMOS ECL LVDS CML...

只愿长相守 提交于 2019-11-28 02:37:49
http://hi.baidu.com/hieda/blog/item/4c53ed2b4c4dc7f9e6cd40fe.html 数字电平标准 [部分转帖] 下面总结一下各电平标准。和有需要的人共享一下^_^. 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的 LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。 TTL :Transistor-Transistor Logic 三极管结构。 Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。 因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。 LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。 3.3V LVTTL : Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。 2.5V LVTTL : Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。 更低的LVTTL不常用就先不讲了

TTL与CMOS电平的区别

落爺英雄遲暮 提交于 2019-11-28 02:37:30
http://hi.baidu.com/hieda/blog/item/2fdeab4388b6a11072f05d28.html (一) TTL高电平3.6~5V,低电平0V~2.4V CMOS电平Vcc可达到12V CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。 CMOS电路不使用的输入端不能悬空,会造成逻辑混乱。 EDA中国门户网站 e q C9f Q TTL电路不使用的输入端悬空为高电平,另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。 用TTL电平他们就可以兼容 (二) TTL电平是5V,CMOS电平一般是12V。 因为TTL电路电源电压是5V,CMOS电路电源电压一般是12V。 5V的电平不能触发CMOS电路,12V的电平会损坏TTL电路,因此不能互相兼容匹配。 (三) TTL电平标准 输出 L: <0.8V ; H:>2.4V。 输入 L: <1.2V ; H:>2.0V TTL器件输出低电平要小于0.8V,高电平要大于2.4V。输入,低于1.2V就认为是0,高于2.0就认为是1。 CMOS电平: 输出 L: <0.1*Vcc ; H:>0.9*Vcc。 输入 L: <0.3*Vcc ; H:>0.7*Vcc. 一般单片机、DSP、FPGA他们之间管教能否直接相连. 一般情况下,同电压的是可以的