checkpoint

Checkpoints in Google Colab

半腔热情 提交于 2020-01-03 02:23:11
问题 How do I store my trained model on Google Colab and retrieve further on my local disk? Will checkpoints work? How do I store them and retrieve them after some time? Can you please mention code for that. It would be great. 回答1: Google Colab instances are created when you open the notebook and are deleted later on so you can't access data on different runs. If you want to download the trained model to your local machine you can use: from google.colab import files files.download(<filename>) And

Is it possible to interrupt a process and checkpoint it to resume it later on?

狂风中的少年 提交于 2019-12-30 10:27:09
问题 Lets say, you have an application, which is consuming up all the computational power. Now you want to do some other necessary work. Is there any way on Linux, to interrupt that application and checkpoint its state, so that later on it could be resumed from the state it was interrupted? Especially I am interested in a way, where the application could be stopped and restarted on another machine. Is that possible too? 回答1: In general terms, checkpointing a process is not entirely possible

Checkpoint/restart using Core Dump in Linux

為{幸葍}努か 提交于 2019-12-30 03:18:25
问题 Can Checkpoint/restart be implemented using the core dump of a process? The core file contains a complete memory dump of the process, thus in theory it should be possible to restore the process to the same state it was in when the core was dumped. 回答1: No, this is not possible in general without special support from the kernel. The kernel maintains a LOT of per-process state, such as the file descriptor table, IPC objects, etc. If you were willing to make lots of simplifying assumptions, such

sqlite之WAL模式

别来无恙 提交于 2019-12-29 02:59:25
链接 概述 在3.7.0以后,WAL(Write-Ahead Log)模式可以使用,是另一种实现事务原子性的方法。 WAL的优点 在大多数情况下更快 并行性更高。因为读操作和写操作可以并行。 文件IO更加有序化,串行化(more sequential) 使用fsync()的次数更少,在fsync()调用时好时坏的机器上较为未定。 缺点 一般情况下需要VFS支持共享内存模式。(shared-memory primitives) 操作数据库文件的进程必须在同一台主机上,不能用在网络操作系统。 持有多个数据库文件的数据库连接对于单个数据库时原子的,对于全部数据库是不原子的。 进入WAL模式以后不能修改page的size。 不能打开只读的WAL数据库(Read-Only Databases),这进程必须有"-shm"文件的写权限。 对于只进行读操作,很少进行写操作的数据库,要慢那么1到2个百分点。 会有多余的"-wal"和"-shm"文件 需要开发者注意 checkpointing 原理 回滚日志的方法是把为改变的数据库文件内容写入日志里,然后把改变后的内容直接写到数据库文件中去。在系统crash或掉电的情况下,日志里的内容被重新写入数据库文件中。日志文件被删除,标志commit着一次commit的结束。 WAL模式于此此相反。原始为改变的数据库内容在数据库文件中

SQLite的WAL机制

孤街醉人 提交于 2019-12-29 02:55:25
1.什么是WAL? WAL的全称是Write Ahead Logging,它是很多数据库中用于实现原子事务的一种机制,SQLite在3.7.0版本引入了该特性。 2.WAL如何工作? 在引入WAL机制之前,SQLite使用rollback journal机制实现原子事务。 rollback journal机制的原理是:在修改数据库文件中的数据之前,先将修改所在分页中的数据备份在另外一个地方,然后才将修改写入到数据库文件中;如果事务失败,则将备份数据拷贝回来,撤销修改;如果事务成功,则删除备份数据,提交修改。 WAL机制的原理是:修改并不直接写入到数据库文件中,而是写入到另外一个称为WAL的文件中;如果事务失败,WAL中的记录会被忽略,撤销修改;如果事务成功,它将在随后的某个时间被写回到数据库文件中,提交修改。 同步WAL文件和数据库文件的行为被称为checkpoint(检查点),它由SQLite自动执行,默认是在WAL文件积累到1000页修改的时候;当然,在适当的时候,也可以手动执行checkpoint,SQLite提供了相关的接口。执行checkpoint之后,WAL文件会被清空。 在读的时候,SQLite将在WAL文件中搜索,找到最后一个写入点,记住它,并忽略在此之后的写入点(这保证了读写和读读可以并行执行);随后,它确定所要读的数据所在页是否在WAL文件中,如果在

Delta Lake源码分析

China☆狼群 提交于 2019-12-27 18:05:05
目录 Delta Lake源码分析 Delta Lake元数据 snapshot生成 日志提交 冲突检测(并发控制) delete update merge Delta Lake源码分析 Delta Lake元数据 delta lake 包含Protocol、Metadata、FileAction(AddFile、RemoveFile)、CommitInfo和SetTransaction这几种元数据action。 Protocol:这是delta lake自身的版本管理,一般只出现在第一次的commit日志里(之后版本升级应该也会有); Metadata:存储delta表的schema信息,第一次commit和每次修改schema时出现,以最后一次出现的为准; FileAction:文件的相关操作,delta lake的文件操作只有添加文件和删除文件; CommitInfo:保存关于本次更改的原始信息,如修改时间,操作类型,读取的数据版本等; SetTransaction:设置application的提交版本,一般用于流式计算的一致性控制(exactlyOnce)。 //初始的commit log会包含protocol和metaData的信息 {"commitInfo":{"timestamp":1576480709055,"operation":"WRITE",

pytorch中tensorboardX进行可视化

我是研究僧i 提交于 2019-12-26 01:30:22
环境依赖: pytorch 0.4以上 tensorboardX: pip install tensorboardX、pip install tensorflow 在项目代码中加入tensorboardX的记录代码,生成文件并返回到浏览器中显示可视化结果。 官方示例: 默认设置是在根目录下生成一个runs文件夹,里面存储summary的信息。 在runs的同级目录下命令行中输入: tensorboard --logdir runs (不是输tensorboardX) 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: 1 import argparse 2 import os 3 import numpy as np 4 from tqdm import tqdm 5 6 from mypath import Path 7 from dataloaders import make_data_loader 8 from modeling.sync_batchnorm.replicate import patch_replication_callback 9 from modeling.deeplab import * 10 from modeling.psp_net import * 11 from

Interval between checkpoints in tensorflow

我的梦境 提交于 2019-12-25 16:39:51
问题 How can I specify the interval between 2 consecutive checkpoints in tensorflow? There are no options in tf.train.Saver to specify that. Every time, I run the model with a different number of global steps, I get a new interval between checkpoints 回答1: The tf.train.Saver is a "passive" utility for writing checkpoints, and it only writes a checkpoint when some other code calls its .save() method. Therefore, the rate at which checkpoints are written depends on what framework you are using to

R: set 'Checkpoint' on Worker of Cluster

送分小仙女□ 提交于 2019-12-23 16:48:07
问题 I use the following code to ... 1. create a parallel cluster 2. source test.R 3. and do some parallel work with functions defined in 'test.R' library(parallel) cl <- makeCluster(4) clusterEvalQ(cl, source("test.R")) ## do some parallel work stopCluster(cl) Unfortunately I rely on old packages :-( One can make use of past snapshots of the CRAN packages using 'checkpoints' require(checkpoint) checkpoint("2015-02-28") My question is ... how can I make use of the old packages on the Cluster

Tensorflow checkpoint models getting deleted

99封情书 提交于 2019-12-22 09:38:30
问题 I am using tensorflow checkpointing after every 10 epochs using the following code : checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") ... if current_step % checkpoint_every == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) The problem is that, as the new files are getting generated, previous 5 model files are getting deleted