基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入,利用贝叶斯定理求出后验概率最大的输出 \(y\) 。 朴素贝叶斯法通过训练数据集学习联合概率分布 \(P(X,Y)\) 。具体地,学习以下先验概率分布及条件概率分布。先验概率分布: \[P(Y=c_k),\quad k=1,2,\cdots,K\] 条件概率分布: \[P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k),\quad k=1,2,\cdots, K\] 于是基于上面两个概率就学到了联合概率分布。但条件概率分布有指数级数量的参数,其估计实际上是不可行。 朴素贝叶斯法对条件概率分布做了条件独立性假设: \[\begin{aligned} P(X=x|Y=c_k) & =P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k) \\ & = \prod \limits_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k) \end{aligned}\] 朴素贝叶斯法实际上学习到生成数据的机制,属于生成模型。条件独立假设等于说用于分类的特征在类确定的条件下都是条件独立的。这一假设使朴素贝叶斯法变得简单