概率论的数学基础
作者|Tivadar Danka 编译|VK 来源|Towards Data Science 抽象是为了隐藏不相关的东西,只关注重要的细节。虽然有时看起来很可怕,但它是管理复杂性的最佳工具。 如果你让n个数学家来定义数学是什么,你可能会得到2n个不同的答案。我的定义是,它是一门将事物抽象出来,直到只剩下核心的科学,为任何事物的推理提供了最终的框架。 你想过概率到底是多少吗?你肯定用它来推理数据,做统计分析,甚至通过统计学习为你建立推理算法。在这篇文章中,我们将深入探索概率论。 前置知识 为了贯彻下去,你不需要任何高等数学,我会集中精力从基础上解释一切。但是,如果你知道以下几点,这是有益的: 集合和集合运算,如并集、交集和差集。 极限和一些基本微积分。 事件与度量 概率可以被启发式地认为是一个函数,用来测量事件发生的可能性。但从数学上讲,目前还不清楚什么是事件和度量。在我们能恰当地讨论概率之前,我们需要先打下坚实的基础。所以,让我们从事件开始。 事件 “我用这个骰子掷奇数的概率是多少?” 当我们谈到概率时,这个简单的问题作为一个例子出现在我们的脑海中。在这个简单的问题中,事件是掷出一个奇数。 为了进行数学建模,我们使用集合。包含实验结果的基本集合“全集”是Ω={1,2,3,4,5,6},事件是Ω的子集。这里,掷出奇数对应于子集A={1,3,5}。 所以,要定义概率