ML.NET机器学习、API容器化与Azure DevOps实践(三):RESTful API
通过 上文 所述案例,我们已经选择了最优回归算法来预测学生的综合成绩,并且完成了基于训练数据集的预测模型训练。从实现上,训练好的模型被保存成一个ZIP文件,以便在其它项目中直接调用以完成机器学习的实践场景。在本文中,我将介绍如何在ASP.NET Core中使用这个ZIP文件,以提供用于学生成绩预测的RESTful API。 将模型文件保存到Azure Blob Storage中 我们已经得到了经过ML.NET训练好的模型数据文件,也就是一个ZIP文件,在开发的RESTful API中,需要读入这个文件以便实现预测功能。于是,ZIP文件保存在何处就成为了我们首要解决的问题。在开发环境,我们可以将ZIP文件保存在ASP.NET Core的运行目录中,可是,开发好的RESTful API最终还是要部署到生产环境,这种部署有可能是单节点的,也有可能是位于负载均衡服务器后端的多节点部署,而且模型文件也会随着训练数据集的增加或变化进行增量式更新,因此,依赖于部署环境的本地文件系统并不是一个好的做法。因此,我选择将模型文件保存在 Azure Blob Storage 中。 注意:为了防止在开发调试阶段过多使用Azure Blob Storage的流量,我们可以在ASP.NET Core的应用程序中实现两套模型数据供应器:一套从本地文件系统读入模型,用于开发环境,另一套从Azure Blob