美颜的算法及实现基础
在图像处理领域,大家接触最多的算法加成应该就是手机里的美颜自拍了,除了有专用的美颜APP之外,很多手机的相机原生系统也都支持美颜功能。 美颜按功能需求来看可分为基础、高级和附加功能三大块。基础概念就是磨皮、处理肤色,目前即便是原生系统自带的相机美颜也能做到基础美颜功能的实时计算,所以启动相机取景预览时就能看到,目前直播用的美颜摄像头已经可以实现高级功能的即时演算,比如祛痘、瘦脸、增大眼睛、五官立体等……此前翻车的某网红女主播就是在扭头瞬间人脸未被识别,现了不到1秒的原形但被吃瓜网友抓包,所以人脸识别是实现美颜,特别是实时美颜的第一前提。而年龄计算、AR装饰、美妆等就属于美颜之外(或之上)的另一类图像算法了。 美颜功能的基本构架就是这样,接下来就来一点一点地聊聊美颜算法的细节,首当其冲的自然是最重要的基本功能:磨皮。从算法的角度来看,磨皮是用滤波器将痘印、胎记、伤痕等高频信息给滤除,再用光滑皮肤灯领域低频信息进行填充。在种类繁多的高频滤波器里,适用于人像修复的主要都是带通滤波器,比如双边滤波、导向滤波、灰度图像各向异性扩散等,因为它们的特色是可以保留边缘信息,在磨皮的同时不会像高斯滤波那样让整张照片都模糊掉。 双边滤波,简单来说它是高斯滤波的衍生版,区别在于双边滤波在把像素空域距离纳入计算的同时,还考虑了像素值域之间差值的高斯系数,两个像素的值域差距越大,计算过程中的权重就越小