如何在 Flink 1.9 中使用 Hive?
Apache Flink 从 1.9.0 版本开始增加了与 Hive 集成的功能,用户可以通过 Flink 来访问 Hive 的元数据,以及读写 Hive 中的表。本文将主要从项目的设计架构、最新进展、使用说明等方面来介绍这一功能。 Flink on Hive 介绍 SQL 是大数据领域中的重要应用场景,为了完善 Flink 的生态,发掘 Flink 在批处理方面的潜力,我们决定增强 FlinkSQL 的功能,从而让用户能够通过 Flink 完成更多的任务。 Hive 是大数据领域最早出现的 SQL 引擎,发展至今有着丰富的功能和广泛的用户基础。之后出现的 SQL 引擎,如 Spark SQL、Impala 等,都在一定程度上提供了与 Hive 集成的功能,从而方便用户使用现有的数据仓库、进行作业迁移等。因此我们认为提供与 Hive 交互的能力对于 FlinkSQL 也是非常重要的。 设计架构 与 Hive 集成主要包含了元数据和实际表数据的访问,因此我们会从这两方面介绍一下该项目的架构。 1.元数据 为了访问外部系统的元数据,Flink 提供了 ExternalCatalog 的概念。但是目前 ExternalCatalog 的定义非常不完整,基本处于不可用的状态。因此,我们提出了一套全新的 Catalog 接口来取代现有的 ExternalCatalog。新的 Catalog