Apache Flink

Apache Flink 进阶入门(二):Time 深度解析

醉酒当歌 提交于 2019-11-29 21:31:48
前言 Flink 的 API 大体上可以划分为三个层次:处于最底层的 ProcessFunction、中间一层的 DataStream API 和最上层的 SQL/Table API,这三层中的每一层都非常依赖于时间属性。时间属性是流处理中最重要的一个方面,是流处理系统的基石之一,贯穿这三层 API。在 DataStream API 这一层中因为封装方面的原因,我们能够接触到时间的地方不是很多,所以我们将重点放在底层的 ProcessFunction 和最上层的 SQL/Table API。 Flink 时间语义 在不同的应用场景中时间语义是各不相同的,Flink 作为一个先进的分布式流处理引擎,它本身支持不同的时间语义。其核心是 Processing Time 和 Event Time(Row Time),这两类时间主要的不同点如下表所示: Processing Time 是来模拟我们真实世界的时间,其实就算是处理数据的节点本地时间也不一定就是完完全全的我们真实世界的时间,所以说它是用来模拟真实世界的时间。而 Event Time 是数据世界的时间,就是我们要处理的数据流世界里面的时间。关于他们的获取方式,Process Time 是通过直接去调用本地机器的时间,而 Event Time 则是根据每一条处理记录所携带的时间戳来判定。 这两种时间在 Flink

Apache Flink 进阶入门(二):Time 深度解析

坚强是说给别人听的谎言 提交于 2019-11-29 21:30:48
前言 Flink 的 API 大体上可以划分为三个层次:处于最底层的 ProcessFunction、中间一层的 DataStream API 和最上层的 SQL/Table API,这三层中的每一层都非常依赖于时间属性。时间属性是流处理中最重要的一个方面,是流处理系统的基石之一,贯穿这三层 API。在 DataStream API 这一层中因为封装方面的原因,我们能够接触到时间的地方不是很多,所以我们将重点放在底层的 ProcessFunction 和最上层的 SQL/Table API。 Flink 时间语义 在不同的应用场景中时间语义是各不相同的,Flink 作为一个先进的分布式流处理引擎,它本身支持不同的时间语义。其核心是 Processing Time 和 Event Time(Row Time),这两类时间主要的不同点如下表所示: Processing Time 是来模拟我们真实世界的时间,其实就算是处理数据的节点本地时间也不一定就是完完全全的我们真实世界的时间,所以说它是用来模拟真实世界的时间。而 Event Time 是数据世界的时间,就是我们要处理的数据流世界里面的时间。关于他们的获取方式,Process Time 是通过直接去调用本地机器的时间,而 Event Time 则是根据每一条处理记录所携带的时间戳来判定。 这两种时间在 Flink

Apache Flink 进阶(一):Runtime 核心机制剖析

随声附和 提交于 2019-11-29 19:15:22
1. 综述 本文主要介绍 Flink Runtime 的作业执行的核心机制。首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理、作业调度以及错误恢复的。最后,本文还将简要介绍 Flink Runtime 层当前正在进行的一些工作。 2. Flink Runtime 整体架构 Flink 的整体架构如图 1 所示。Flink 是可以运行在多种不同的环境中的,例如,它可以通过单进程多线程的方式直接运行,从而提供调试的能力。它也可以运行在 Yarn 或者 K8S 这种资源管理系统上面,也可以在各种云环境中执行。 图1. Flink 的整体架构,其中 Runtime 层对不同的执行环境提供了一套统一的分布式执行引擎。 针对不同的执行环境,Flink 提供了一套统一的分布式作业执行引擎,也就是 Flink Runtime 这层。Flink 在 Runtime 层之上提供了 DataStream 和 DataSet 两套 API,分别用来编写流作业与批作业,以及一组更高级的 API 来简化特定作业的编写。本文主要介绍 Flink Runtime 层的整体架构。 Flink Runtime 层的主要架构如图 2 所示,它展示了一个 Flink 集群的基本结构。Flink Runtime 层的整个架构主要是在 FLIP

Apache Flink 进阶(一):Runtime 核心机制剖析

烈酒焚心 提交于 2019-11-29 19:14:49
1. 综述 本文主要介绍 Flink Runtime 的作业执行的核心机制。首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理、作业调度以及错误恢复的。最后,本文还将简要介绍 Flink Runtime 层当前正在进行的一些工作。 2. Flink Runtime 整体架构 Flink 的整体架构如图 1 所示。Flink 是可以运行在多种不同的环境中的,例如,它可以通过单进程多线程的方式直接运行,从而提供调试的能力。它也可以运行在 Yarn 或者 K8S 这种资源管理系统上面,也可以在各种云环境中执行。 图1. Flink 的整体架构,其中 Runtime 层对不同的执行环境提供了一套统一的分布式执行引擎。 针对不同的执行环境,Flink 提供了一套统一的分布式作业执行引擎,也就是 Flink Runtime 这层。Flink 在 Runtime 层之上提供了 DataStream 和 DataSet 两套 API,分别用来编写流作业与批作业,以及一组更高级的 API 来简化特定作业的编写。本文主要介绍 Flink Runtime 层的整体架构。 Flink Runtime 层的主要架构如图 2 所示,它展示了一个 Flink 集群的基本结构。Flink Runtime 层的整个架构主要是在 FLIP

Apache Flink 零基础入门(二十)Flink connector

北城余情 提交于 2019-11-29 19:14:36
内置source和sink 内置source包括从文件读取,从文件夹读取,从socket中读取、从集合或者迭代器中读取。内置的sink包括写文件、控制台输出、socket 内置connectors Apache Kafka (source/sink) Apache Cassandra (sink) Amazon Kinesis Streams (source/sink) Elasticsearch (sink) Hadoop FileSystem (sink) RabbitMQ (source/sink) Apache NiFi (source/sink) Twitter Streaming API (source) HDFS Connector 这个connector提供了一个sink,可以写分区到任何一个文件系统(只要支持hadoop filesystem就可以)。 来源: https://my.oschina.net/duanvincent/blog/3106670

Apache Flink 进阶(一):Runtime 核心机制剖析

a 夏天 提交于 2019-11-29 18:55:10
1. 综述 本文主要介绍 Flink Runtime 的作业执行的核心机制。首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理、作业调度以及错误恢复的。最后,本文还将简要介绍 Flink Runtime 层当前正在进行的一些工作。 2. Flink Runtime 整体架构 Flink 的整体架构如图 1 所示。Flink 是可以运行在多种不同的环境中的,例如,它可以通过单进程多线程的方式直接运行,从而提供调试的能力。它也可以运行在 Yarn 或者 K8S 这种资源管理系统上面,也可以在各种云环境中执行。 图1. Flink 的整体架构,其中 Runtime 层对不同的执行环境提供了一套统一的分布式执行引擎。 针对不同的执行环境,Flink 提供了一套统一的分布式作业执行引擎,也就是 Flink Runtime 这层。Flink 在 Runtime 层之上提供了 DataStream 和 DataSet 两套 API,分别用来编写流作业与批作业,以及一组更高级的 API 来简化特定作业的编写。本文主要介绍 Flink Runtime 层的整体架构。 Flink Runtime 层的主要架构如图 2 所示,它展示了一个 Flink 集群的基本结构。Flink Runtime 层的整个架构主要是在 FLIP

Flink 实战:如何解决生产环境中的技术难题?

跟風遠走 提交于 2019-11-29 17:31:12
大数据作为未来技术的基石已成为国家基础性战略资源,挖掘数据无穷潜力,将算力推至极致是整个社会面临的挑战与难题。 Apache Flink 作为业界公认为最好的流计算引擎,不仅仅局限于做流处理,而是一套兼具流、批、机器学习等多种计算功能的大数据引擎,以其高吞吐低延时的优异实时计算能力、支持海量数据的亚秒级快速响应帮助企业和开发者实现数据算力升级,并成为阿里、腾讯、滴滴、美团、字节跳动、Netflix、Lyft 等国内外知名公司建设实时计算平台的首选。 更好的释放 Flink 的强大算力,需要解决哪些问题?如何进行技术选型?针对业务的特点如何进行相应改进? 实践过程中需要规避哪些坑? 11 月 28-30日,Flink Forward Asia 重磅开启!由来自阿里巴巴及 Ververica 的 19 位 Flink 技术专家们倾力打造的四门培训课程,针对不同阶段、不同学习需求提供技术支持,赋能一线开发者,是小白同学也适合深度学习课程。 培训仅剩的少量名额开放预约中,详情可加微信(ID:candy1764)咨询,从基础概念的准确理解到上手实操的精准熟练,四门线下实战课程,帮你从容应对生产环境中的技术难题。最后一周,不容错过! 参与培训课程你能收获什么? 你将准确了解分布式数据流、事件时间和状态等核心概念以及在 API 中的体现,并学习如何将这些概念组合在一起来解决实际问题。

基于 Flink 的实时数仓生产实践

。_饼干妹妹 提交于 2019-11-29 17:17:59
数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战。在智能商业中,数据的结果代表了用户反馈、获取数据的及时性尤为重要。快速获取数据反馈能够帮助公司更快地做出决策,更好地进行产品迭代,实时数仓在这一过程中起到了不可替代的作用。 如何更好的建设实时数仓、有哪些优秀的生产实践经验可借鉴? 11月28-30日,Flink Forward Asia 邀请来自 Netflix、美团点评、小米、OPPO、菜鸟等数仓专家,聚焦 Flink 实时数仓在数据链路中扮演的角色与在智能商业中的重要价值,分享实时数仓的应用实践及平台智能化的探索与思考。 美团点评基于 Apache Flink 的实时数仓平台实践 鲁昊 | 美团点评高级技术专家 美团点评的业务众多,涉及几十条业务线;数据量大,处理峰值达到 1.5 亿条每秒,每天数据增长量超过 3 万亿条;大多数业务都是交易场景,链路长、状态多样,业务在数仓建设中面临着很大挑战。随着业务对时效性的要求越来越高,如即时配送、实时营销,越来越多的业务对实时数仓提出了需求和探索。实时计算团队调研汇总了多个业务线在实时数仓方面的建设经验,建设了一站式的实时数仓开发平台,以更好得支持业务发展。 本次分享将主要介绍实时计算的业务应用和规模、多个业务在实时数仓方面的建设情况,以及基于 Flink 的实时计算平台和实时数仓平台。

你需要的不是实时数仓 | 你需要的是一款合适且强大的OLAP数据库(上)

旧时模样 提交于 2019-11-29 17:17:43
前言 今年有个现象,实时数仓建设突然就被大家所关注。我个人在公众号也写过和转载过几篇关于实时数据仓库的文章和方案。 但是对于实时数仓的狂热追求大可不必。 首先,在技术上几乎没有难点,基于强大的开源中间件实现实时数据仓库的需求已经变得没有那么困难。其次,实时数仓的建设一定是伴随着业务的发展而发展,武断的认为Kappa架构一定是最好的实时数仓架构是不对的。实际情况中随着业务的发展数仓的架构变得没有那么非此即彼。 在整个实时数仓的建设中,OLAP数据库的选型直接制约实时数仓的可用性和功能性。本文从业内几个典型的数仓建设和发展情况入手,从架构、技术选型和优缺点分别给大家分析现在市场上的开源OLAP引擎,旨在方便大家技术选型过程中能够根据实际业务进行选择。 管中窥豹-菜鸟/知乎/美团/网易严选实时数仓建设 为什么要构建实时数据仓库 传统的离线数据仓库将业务数据集中进行存储后,以固定的计算逻辑定时进行ETL和其它建模后产出报表等应用。离线数据仓库主要是构建T+1的离线数据,通过定时任务每天拉取增量数据,然后创建各个业务相关的主题维度数据,对外提供T+1的数据查询接口。计算和数据的实时性均较差,业务人员无法根据自己的即时性需要获取几分钟之前的实时数据。数据本身的价值随着时间的流逝会逐步减弱,因此数据发生后必须尽快的达到用户的手中,实时数仓的构建需求也应运而生。 总之就是一句话:时效性的要求。

基于 Flink 的实时数仓生产实践

倖福魔咒の 提交于 2019-11-29 17:15:49
数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战。在智能商业中,数据的结果代表了用户反馈、获取数据的及时性尤为重要。快速获取数据反馈能够帮助公司更快地做出决策,更好地进行产品迭代,实时数仓在这一过程中起到了不可替代的作用。 如何更好的建设实时数仓、有哪些优秀的生产实践经验可借鉴? 11月28-30日,Flink Forward Asia 邀请来自 Netflix、美团点评、小米、OPPO、菜鸟等数仓专家,聚焦 Flink 实时数仓在数据链路中扮演的角色与在智能商业中的重要价值,分享实时数仓的应用实践及平台智能化的探索与思考。 美团点评基于 Apache Flink 的实时数仓平台实践 鲁昊 | 美团点评高级技术专家 美团点评的业务众多,涉及几十条业务线;数据量大,处理峰值达到 1.5 亿条每秒,每天数据增长量超过 3 万亿条;大多数业务都是交易场景,链路长、状态多样,业务在数仓建设中面临着很大挑战。随着业务对时效性的要求越来越高,如即时配送、实时营销,越来越多的业务对实时数仓提出了需求和探索。实时计算团队调研汇总了多个业务线在实时数仓方面的建设经验,建设了一站式的实时数仓开发平台,以更好得支持业务发展。 本次分享将主要介绍实时计算的业务应用和规模、多个业务在实时数仓方面的建设情况,以及基于 Flink 的实时计算平台和实时数仓平台。