FEC-Reed-Solomon算法浅析(一)
前言 本文是介绍FEC-Reed—Solomon算法的第一篇,主要介绍伽罗华域的相关知识,因为这个伽罗华域算是这个算法能够广泛被应用在网络通信的大功臣来,我们先来看看伽罗华域是什么。先介绍下创造这个域的人,伽罗华(也译作伽瓦罗),法国数学家,群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论。这个人比较悲惨的是他死于与其他人的决斗当中,不得不说有点可惜。好了,让我们进入正题。 相关数据概念 域 一组元素的集合,以及在集合上的四则运算,构成一个域。其中加法和乘法必须满足交换、结合和分配的规律。加法和乘法具有封闭性,即加法和乘法结果仍然是域中的元素。域中必须有加法单位元和乘法单位元,且每一个元素都有对应的加法逆元和乘法逆元。但不要求域中的 0有乘法逆元。 有限域 仅含有限多个元素的域。因为它由伽罗华所发现,因而又称为伽罗华域。所以当我们说伽罗华域的时候,就是指有限域。GF( 2 w 2^w 2 w )表示包含有 2 w 2^w 2 w 个元素的有限域。 单位元 Identity Element,通常使用e来表示单位元。单位元和其他元素结合时,并不会改变那些元素。 对于二元运算,若ae=a,e称为右单位元;若ea=a,e称为左单位元,若ae=e*a=a,则e称为单位元。(有点类似于矩阵里面的单位矩阵概念) 逆元 对于二元运算,若ab=e