Be strict with specifying dimensions when using aggregation functions like min, max, mean, diff, sum, any, all,...
For instance the line:
reldiff = diff(a) ./ a(1:end-1)
might work well to compute relative differences of elements in a vector, however in case the vector degenerates to just one element the computation fails:
>> a=rand(1,7);
>> diff(a) ./ a(1:end-1)
ans =
-0.5822 -0.9935 224.2015 0.2708 -0.3328 0.0458
>> a=1;
>> diff(a) ./ a(1:end-1)
??? Error using ==> rdivide
Matrix dimensions must agree.
If you specify the correct dimensions to your functions, this line returns an empty 1-by-0 matrix, which is correct:
>> diff(a, [], 2) ./ a(1, 1:end-1)
ans =
Empty matrix: 1-by-0
>>
The same goes for a min-function which usually computes minimums over columns on a matrix, until the matrix only consists of one row. - Then it will return the minimum over the row unless the dimension parameter states otherwise, and probably break your application.
I can almost guarantee you that consequently setting the dimensions of these aggregation functions will save you quite some debugging work later on.
At least that would have been the case for me. :)