I\'m trying to learn scheme via SICP. Exercise 1.3 reads as follow: Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two la
I did it with the following code, which uses the built-in min
, max
, and square
procedures. They're simple enough to implement using only what's been introduced in the text up to that point.
(define (sum-of-highest-squares x y z)
(+ (square (max x y))
(square (max (min x y) z))))
;exercise 1.3
(define (sum-square-of-max a b c)
(+ (if (> a b) (* a a) (* b b))
(if (> b c) (* b b) (* c c))))
I think this is the smallest and most efficient way:
(define (square-sum-larger a b c)
(+
(square (max a b))
(square (max (min a b) c))))
What about something like this?
(define (p a b c)
(if (> a b)
(if (> b c)
(+ (square a) (square b))
(+ (square a) (square c)))
(if (> a c)
(+ (square a) (square b))
(+ (square b) (square c)))))
Using only the concepts presented at that point of the book, I would do it:
(define (square x) (* x x))
(define (sum-of-squares x y) (+ (square x) (square y)))
(define (min x y) (if (< x y) x y))
(define (max x y) (if (> x y) x y))
(define (sum-squares-2-biggest x y z)
(sum-of-squares (max x y) (max z (min x y))))
I've had a go:
(define (procedure a b c)
(let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
(+ (square (first y)) (square(second y)))))