I\'m trying to learn scheme via SICP. Exercise 1.3 reads as follow: Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two la
(define (sum-sqr x y)
(+ (square x) (square y)))
(define (sum-squares-2-of-3 x y z)
(cond ((and (<= x y) (<= x z)) (sum-sqr y z))
((and (<= y x) (<= y z)) (sum-sqr x z))
((and (<= z x) (<= z y)) (sum-sqr x y))))
You can also sort the list and add the squares of the first and second element of the sorted list:
(require (lib "list.ss")) ;; I use PLT Scheme
(define (exercise-1-3 a b c)
(let* [(sorted-list (sort (list a b c) >))
(x (first sorted-list))
(y (second sorted-list))]
(+ (* x x) (* y y))))
(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b )
( if (< a b) b a))
(define (smaller a b )
( if (< a b) a b))
(define (sumOfSquare a b)
(sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
(sumOfSquare (greater a b) (greater (smaller a b) c)))
Below is the solution that I came up with. I find it easier to reason about a solution when the code is decomposed into small functions.
; Exercise 1.3
(define (sum-square-largest a b c)
(+ (square (greatest a b))
(square (greatest (least a b) c))))
(define (greatest a b)
(cond (( > a b) a)
(( < a b) b)))
(define (least a b)
(cond ((> a b) b)
((< a b) a)))
(define (square a)
(* a a))
Here's yet another way to do it:
#!/usr/bin/env mzscheme #lang scheme/load (module ex-1.3 scheme/base (define (ex-1.3 a b c) (let* ((square (lambda (x) (* x x))) (p (lambda (a b c) (+ (square a) (square (if (> b c) b c)))))) (if (> a b) (p a b c) (p b a c)))) (require scheme/contract) (provide/contract [ex-1.3 (-> number? number? number? number?)])) ;; tests (module ex-1.3/test scheme/base (require (planet "test.ss" ("schematics" "schemeunit.plt" 2)) (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2))) (require 'ex-1.3) (test/text-ui (test-suite "ex-1.3" (test-equal? "1 2 3" (ex-1.3 1 2 3) 13) (test-equal? "2 1 3" (ex-1.3 2 1 3) 13) (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25) (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25) (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0))) (test-equal? "all equal" (ex-1.3 3 3 3) 18)))) (require 'ex-1.3/test)
Example:
$ mzscheme ex-1.3.ss 6 success(es) 0 failure(s) 0 error(s) 6 test(s) run 0
It's nice to see how other people have solved this problem. This was my solution:
(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))
(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)
(sumLarger y z x)
(isGreater? x y z)))
I solved it by iteration, but I like ashitaka's and the (+ (square (max x y)) (square (max (min x y) z))) solutions better, since in my version, if z is the smallest number, isGreater? is called twice, creating an unnecessarily slow and circuitous procedure.