I am trying to create a class as such:
class CLASS
{
public:
//stuff
private:
int x, y;
char array[x][y];
};
Of course, it does
Put all the memory into one block.
Because it is private you can then get your access methods to retrieve the correct value.
Quick example:
#include <vector>
#include <iostream>
class Matrix
{
public:
class Row
{
public:
Row(Matrix& p,unsigned int x)
:parent(p)
,xAxis(x)
{}
char& operator[](int yAxis)
{
return parent.data(xAxis,yAxis);
}
private:
Matrix& parent;
unsigned int xAxis;
};
Matrix(unsigned int x,unsigned int y)
:xSize(x)
,ySize(y)
,dataArray(x*y)
{}
Matrix::Row operator[](unsigned int xAxis)
{
return Row(*this,xAxis);
}
char& data(unsigned int xAxis,unsigned int yAxis)
{
return dataArray[yAxis*xSize + xAxis];
}
private:
unsigned int xSize;
unsigned int ySize;
std::vector<char> dataArray;
};
int main()
{
Matrix two(2,2);
two[0][0] = '1';
two[0][1] = '2';
two[1][0] = '3';
two[1][1] = '4';
std::cout << two[1][0] << "\n";
std::cout << two.data(1,0) << "\n";
}
Take a look at boost::multi_array.
Not in that manner, as in c++, c-style array sizes have to be known at compile time, with some vendor specific extensions allowing certain runtime sizes (to enhance compatibility with C99), but not in the situation you are describing (if you are interested, here's a description). The easiest thing to do would be:
std::vector< std::vector<char> > array;
And apply the size in the constructor:
array.resize(x);
for(std::vector< std::vector<char> >::iterator curr(array.begin()),end(array.end());curr!=end;++curr){
curr->resize(y);
}
There are many advantages of vector over c style arrays, see here