I am trying to create a class as such:
class CLASS
{
public:
//stuff
private:
int x, y;
char array[x][y];
};
Of course, it does
use vector.
#include <vector>
class YourClass
{
public:
YourClass()
: x(read_x_from_file()), y(read_y_from_file())
{
my_array.resize(x);
for(int ix = 0; ix < x; ++ix)
my_array[ix].resize(y);
}
//stuff
private:
int x, y;
std::vector<std::vector<char> > my_array;
};
You can allocate memory to your 2-dimensional array in the constructor and free it in the destructor. The simplest way:
array = (char **)malloc(sizeof(char *) * x);
if (array) {
for (i = 0; i < x; i++) {
array[i] = (char *)malloc(sizeof(char) * y);
assert(array[i]);
}
}
If you want a dynamically sized array as a class member, you need to array new
it and assign that value to a pointer. The char array[size]
syntax is only for statically-sized arrays.
Better yet, you really should use an std::vector< std::vector<char> >
, there are very few good reasons to manually work with dynamically sized arrays these days.
You can't allocate or initialize a global or static array declaratively using non-constant values (compile-time). It's possible for local arrays though (C99 variable sized arrays, as their initializer essentially runs at runtime every time the function is executed).
For your situation, I suggest using a pointer instead of an array and create the actual array dynamically at runtime (using new
):
class CLASS
{
public:
CLASS(int _x, int _y) : x(_x), y(_y) {
array = new char*[x];
for(int i = 0; i < x; ++i)
array[i] = new char[y];
}
~CLASS() {
for (int i = 0; i < x; ++i)
delete[] array[i];
delete[] array;
}
//stuff
private:
int x, y;
char **array;
};
If the size is not known at compile time, the array is dynamic. What you could do to keep it static is to make them larger than your largest expected size.
The compiler need to have the exact size of the class when compiling, you will have to use the new operator to dynamically allocate memory.
Switch char array[x][y]; to char** array; and initialize your array in the constructor, and don't forget to delete your array in the destructor.
class MyClass
{
public:
MyClass() {
x = 10; //read from file
y = 10; //read from file
allocate(x, y);
}
MyClass( const MyClass& otherClass ) {
x = otherClass.x;
y = otherClass.y;
allocate(x, y);
// This can be replace by a memcopy
for( int i=0 ; i<x ; ++i )
for( int j=0 ; j<x ; ++j )
array[i][j] = otherClass.array[i][j];
}
~MyClass(){
deleteMe();
}
void allocate( int x, int y){
array = new char*[x];
for( int i = 0; i < y; i++ )
array[i] = new char[y];
}
void deleteMe(){
for (int i = 0; i < y; i++)
delete[] array[i];
delete[] array;
}
MyClass& operator= (const MyClass& otherClass)
{
if( this != &otherClass )
{
deleteMe();
x = otherClass.x;
y = otherClass.y;
allocate(x, y);
for( int i=0 ; i<x ; ++i )
for( int j=0 ; j<y ; ++j )
array[i][j] = otherClass.array[i][j];
}
return *this;
}
private:
int x, y;
char** array;
};
*EDIT: I've had the copy constructor and the assignment operator