This is a interview question: given an array of integers find the max. and min. using minimum comparisons.
Obviously, I can loop over the array twice and use ~
Compare in Pairs will work best for minimum comparisons
# Initialization #
- if len(arr) is even, min = min(arr[0], arr[1]), max = max(arr[0], arr[1])
- if len(arr) is odd, min = min = arr[0], max = arr[0]
# Loop over pairs #
- Compare bigger of the element with the max, and smaller with min,
- if smaller element less than min, update min, similarly with max.
Total Number of comparisons -
Below is the python code for the above pseudo-code
class Solution(object):
def min_max(self, arr):
size = len(arr)
if size == 1:
return arr[0], arr[0]
if size == 2:
return arr[0], arr[1]
min_n = None
max_n = None
index = None
if size % 2 == 0: # One comparison
min_n = min(arr[0], arr[1])
max_n = max(arr[0], arr[1])
st_index = 2
else:
min_n = arr[0]
max_n = arr[0]
st_index = 1
for index in range(st_index, size, 2):
if arr[index] < arr[index + 1]:
min_n = min(arr[index], min_n)
max_n = max(arr[index + 1], max_n)
else:
min_n = min(arr[index + 1], min_n)
max_n = max(arr[index], max_n)
return min_n, max_n
Brute-force is FASTER!
I would love someone to show me the error of my ways, here, but, …
I compared the actual run times of the brute-force method vs. the (more beautiful) recursive divide and conquer. Typical results (in 10,000,000 calls to each function):
Brute force :
0.657 seconds 10 values => 16 comparisons. Min @ 8, Max @ 10
0.604 seconds 1000000 values => 1999985 comparisons. Min @ 983277, Max @ 794659
Recursive :
1.879 seconds 10 values => 13 comparisons. Min @ 8, Max @ 10
2.041 seconds 1000000 values => 1499998 comparisons. Min @ 983277, Max @ 794659
Surprisingly, the brute-force method was about 2.9 times faster for an array of 10 items, and 3.4 times faster for an array of 1,000,000 items.
Evidently, the number of comparisons is not the problem, but possibly the number of re-assignments, and the overhead of calling a recursive function (which might explain why 1,000,000 values runs slower than 10 values).
Caveats : I did this in VBA, not C, and I was comparing double-precision numbers and returning the index into the array of the Min and Max values.
Here is the code I used (class cPerformanceCounter is not included here but uses QueryPerformanceCounter for high-resolution timing) :
Option Explicit
'2014.07.02
Private m_l_NumberOfComparisons As Long
Sub Time_MinMax()
Const LBOUND_VALUES As Long = 1
Dim l_pcOverall As cPerformanceCounter
Dim l_d_Values() As Double
Dim i As Long, _
k As Long, _
l_l_UBoundValues As Long, _
l_l_NumberOfIterations As Long, _
l_l_IndexOfMin As Long, _
l_l_IndexOfMax As Long
Set l_pcOverall = New cPerformanceCounter
For k = 1 To 2
l_l_UBoundValues = IIf(k = 1, 10, 1000000)
ReDim l_d_Values(LBOUND_VALUES To l_l_UBoundValues)
'Assign random values
Randomize '1 '1 => the same random values to be used each time
For i = LBOUND_VALUES To l_l_UBoundValues
l_d_Values(i) = Rnd
Next i
For i = LBOUND_VALUES To l_l_UBoundValues
l_d_Values(i) = Rnd
Next i
'This keeps the total run time in the one-second neighborhood
l_l_NumberOfIterations = 10000000 / l_l_UBoundValues
'——————— Time Brute Force Method —————————————————————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
IndexOfMinAndMaxDoubleBruteForce _
l_d_Values, _
LBOUND_VALUES, _
l_l_UBoundValues, _
l_l_IndexOfMin, _
l_l_IndexOfMax
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Brute-Force " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Brute Force Method —————————————————————————————————————
'——————— Time Brute Force Using Individual Calls —————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
l_l_IndexOfMin = IndexOfMinDouble(l_d_Values)
l_l_IndexOfMax = IndexOfMaxDouble(l_d_Values)
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Individual " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Brute Force Using Individual Calls —————————————————————
'——————— Time Recursive Divide and Conquer Method ————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer _
l_d_Values, _
LBOUND_VALUES, _
l_l_UBoundValues, _
l_l_IndexOfMin, l_l_IndexOfMax
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Recursive " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Recursive Divide and Conquer Method ————————————————————
Next k
End Sub
'Recursive divide and conquer
Sub IndexOfMinAndMaxDoubleRecursiveDivideAndConquer( _
i_dArray() As Double, _
i_l_LBound As Long, _
i_l_UBound As Long, _
o_l_IndexOfMin As Long, _
o_l_IndexOfMax As Long)
Dim l_l_IndexOfLeftMin As Long, _
l_l_IndexOfLeftMax As Long, _
l_l_IndexOfRightMin As Long, _
l_l_IndexOfRightMax As Long, _
l_l_IndexOfMidPoint As Long
If (i_l_LBound = i_l_UBound) Then 'Only one element
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = i_l_LBound
ElseIf (i_l_UBound = (i_l_LBound + 1)) Then 'Only two elements
If (i_dArray(i_l_LBound) > i_dArray(i_l_UBound)) Then
o_l_IndexOfMin = i_l_UBound
o_l_IndexOfMax = i_l_LBound
Else
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = i_l_UBound
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Else 'More than two elements => recurse
l_l_IndexOfMidPoint = (i_l_LBound + i_l_UBound) / 2
'Find the min of the elements in the left half
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer _
i_dArray, _
i_l_LBound, _
l_l_IndexOfMidPoint, _
l_l_IndexOfLeftMin, _
l_l_IndexOfLeftMax
'Find the min of the elements in the right half
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer i_dArray, _
l_l_IndexOfMidPoint + 1, _
i_l_UBound, _
l_l_IndexOfRightMin, _
l_l_IndexOfRightMax
'Return the index of the lower of the two values returned
If (i_dArray(l_l_IndexOfLeftMin) > i_dArray(l_l_IndexOfRightMin)) Then
o_l_IndexOfMin = l_l_IndexOfRightMin
Else
o_l_IndexOfMin = l_l_IndexOfLeftMin
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
'Return the index of the lower of the two values returned
If (i_dArray(l_l_IndexOfLeftMax) > i_dArray(l_l_IndexOfRightMax)) Then
o_l_IndexOfMax = l_l_IndexOfLeftMax
Else
o_l_IndexOfMax = l_l_IndexOfRightMax
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
End If
End Sub
Sub IndexOfMinAndMaxDoubleBruteForce( _
i_dArray() As Double, _
i_l_LBound As Long, _
i_l_UBound As Long, _
o_l_IndexOfMin As Long, _
o_l_IndexOfMax As Long)
Dim i As Long
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = o_l_IndexOfMin
For i = i_l_LBound + 1 To i_l_UBound
'Usually we will do two comparisons
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 2
If (i_dArray(i) < i_dArray(o_l_IndexOfMin)) Then
o_l_IndexOfMin = i
'We don't need to do the ElseIf comparison
m_l_NumberOfComparisons = m_l_NumberOfComparisons - 1
ElseIf (i_dArray(i) > i_dArray(o_l_IndexOfMax)) Then
o_l_IndexOfMax = i
End If
Next i
End Sub
Function IndexOfMinDouble( _
i_dArray() As Double _
) As Long
Dim i As Long
On Error GoTo EWE
IndexOfMinDouble = LBound(i_dArray)
For i = IndexOfMinDouble + 1 To UBound(i_dArray)
If (i_dArray(i) < i_dArray(IndexOfMinDouble)) Then
IndexOfMinDouble = i
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Next i
On Error GoTo 0
Exit Function
EWE:
On Error GoTo 0
IndexOfMinDouble = MIN_LONG
End Function
Function IndexOfMaxDouble( _
i_dArray() As Double _
) As Long
Dim i As Long
On Error GoTo EWE
IndexOfMaxDouble = LBound(i_dArray)
For i = IndexOfMaxDouble + 1 To UBound(i_dArray)
If (i_dArray(i) > i_dArray(IndexOfMaxDouble)) Then
IndexOfMaxDouble = i
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Next i
On Error GoTo 0
Exit Function
EWE:
On Error GoTo 0
IndexOfMaxDouble = MIN_LONG
End Function