This is a interview question: given an array of integers find the max. and min. using minimum comparisons.
Obviously, I can loop over the array twice and use ~
A simple pseudo code for the recursive algorithm:
Function MAXMIN (A, low, high)
if (high − low + 1 = 2) then
if (A[low] < A[high]) then
max = A[high]; min = A[low].
return((max, min)).
else
max = A[low]; min = A[high].
return((max, min)).
end if
else
mid = low+high/2
(max_l , min_l ) = MAXMIN(A, low, mid).
(max_r , min_r ) =MAXMIN(A, mid + 1, high).
end if
Set max to the larger of max_l and max_r ;
likewise, set min to the smaller of min_l and min_r .
return((max, min)).
A somewhat different approach, which uses integer arithmetic instead of comparisons (which wasn't explicitly prohibited)
for(int i=0;i<N;i++) {
xmin += x[i]-xmin & x[i]-xmin>>31;
xmax += x[i]-xmax & xmax-x[i]>>31;
}
After reading the question and answers, I decided to try a few versions (in C#).
I thought the fastest would be Anton Knyazyev's one (branch free),
it isn't (on my box).
Results:
/* comp. time(ns)
minmax0 3n/2 855
minmax1 2n 805
minmax2 2n 1315
minmax3 2n 685 */
Why are minmax1 and minmax3 faster?
Probably because the "branch predictor" does a nice job,
each iteration the chance, a new min (or max) is found, decreases,
so predictions become better.
All in all it's a simple test. I do realize my conclusions may be:
-premature.
-not valid for different platforms.
Let's say they're indicative.
Edit: Break-even point minmax0, minmax3: ~100 items,
10,000 items: minmax3 ~3.5 times faster than minmax0.
using System;
using sw = System.Diagnostics.Stopwatch;
class Program
{
static void Main()
{
int n = 1000;
int[] a = buildA(n);
sw sw = new sw();
sw.Start();
for (int i = 1000000; i > 0; i--) minMax3(a);
sw.Stop();
Console.Write(sw.ElapsedMilliseconds);
Console.Read();
}
static int[] minMax0(int[] a) // ~3j/2 comp.
{
int j = a.Length - 1;
if (j < 2) return j < 0 ? null :
j < 1 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a[1], ai = a0;
if (a1 < a0) { a0 = a1; a1 = ai; }
int i = 2;
for (int aj; i < j; i += 2)
{
if ((ai = a[i]) < (aj = a[i + 1])) // hard to predict
{ if (ai < a0) a0 = ai; if (aj > a1) a1 = aj; }
else
{ if (aj < a0) a0 = aj; if (ai > a1) a1 = ai; }
}
if (i <= j)
{ if ((ai = a[i]) < a0) a0 = ai; else if (ai > a1) a1 = ai; }
return new int[] { a0, a1 };
}
static int[] minMax1(int[] a) // ~2j comp.
{
int j = a.Length;
if (j < 3) return j < 1 ? null :
j < 2 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a0, ai = a0;
for (int i = 1; i < j; i++)
{
if ((ai = a[i]) < a0) a0 = ai;
else if (ai > a1) a1 = ai;
}
return new int[] { a0, a1 };
}
static int[] minMax2(int[] a) // ~2j comp.
{
int j = a.Length;
if (j < 2) return j == 0 ? null : new int[] { a[0], a[0] };
int a0 = a[0], a1 = a0;
for (int i = 1, ai = a[1], aj = ai; ; aj = ai = a[i])
{
ai -= a0; a0 += ai & ai >> 31;
aj -= a1; a1 += aj & -aj >> 31;
i++; if (i >= j) break;
}
return new int[] { a0, a1 };
}
static int[] minMax3(int[] a) // ~2j comp.
{
int j = a.Length - 1;
if (j < 2) return j < 0 ? null :
j < 1 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a[1], ai = a0;
if (a1 < a0) { a0 = a1; a1 = ai; }
int i = 2;
for (j -= 2; i < j; i += 3)
{
ai = a[i + 0]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
ai = a[i + 1]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
ai = a[i + 2]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
}
for (j += 2; i <= j; i++)
{ if ((ai = a[i]) < a0) a0 = ai; else if (ai > a1) a1 = ai; }
return new int[] { a0, a1 };
}
static int[] buildA(int n)
{
int[] a = new int[n--]; Random rand = new Random(0);
for (int j = n; n >= 0; n--) a[n] = rand.Next(-1 * j, 1 * j);
return a;
}
}
go for divide and conquer !
1,3,2,5
for this finding min,max will take 6 comparisons
but divide them
1,3 ---> will give min 1 and max 3 in one comparison
2,5 ---> will give min 2 and max 5 in one comparison
now we can compare two mins and maxs
min(1,2) --> will give the final min as 1 (one comparison)
max(3,5) ---> will give the final max as 5 (one comparison)
so totally four comparisons to find both min and max.
Trying to improve on the answer by srbh.kmr. Say we have the sequence:
A = [a1, a2, a3, a4, a5]
Compare a1
& a2
and calculate min12
, max12
:
if (a1 > a2)
min12 = a2
max12 = a1
else
min12 = a1
max12 = a2
Similarly calculate min34
, max34
. Since a5
is alone, keep it as it is...
Now compare min12
& min34
and calculate min14
, similarly calculate max14
. Finally compare min14
& a5
to calculate min15
. Similarly calculate max15
.
Altogether it's only 6 comparisons!
This solution can be extended to an array of arbitrary length. Probably can be implemented by a similar approach to merge-sort (break the array in half and calculate min
max
for each half).
UPDATE: Here's the recursive code in C:
#include <stdio.h>
void minmax (int* a, int i, int j, int* min, int* max) {
int lmin, lmax, rmin, rmax, mid;
if (i == j) {
*min = a[i];
*max = a[j];
} else if (j == i + 1) {
if (a[i] > a[j]) {
*min = a[j];
*max = a[i];
} else {
*min = a[i];
*max = a[j];
}
} else {
mid = (i + j) / 2;
minmax(a, i, mid, &lmin, &lmax);
minmax(a, mid + 1, j, &rmin, &rmax);
*min = (lmin > rmin) ? rmin : lmin;
*max = (lmax > rmax) ? lmax : rmax;
}
}
void main () {
int a [] = {3, 4, 2, 6, 8, 1, 9, 12, 15, 11};
int min, max;
minmax (a, 0, 9, &min, &max);
printf ("Min : %d, Max: %d\n", min, max);
}
Now I cannot make out the exact number of comparisons in terms of N
(the number of elements in the array). But it's hard to see how one can go below this many comparisons.
UPDATE: We can work out the number of comparisons like below:
At the bottom of this tree of computations, we form pairs of integers from the original array. So we have N / 2
leaf nodes. For each of these leaf nodes we do exactly 1 comparison.
By referring to the properties of a perfect-binary-tree, we have:
leaf nodes (L) = N / 2 // known
total nodes (n) = 2L - 1 = N - 1
internal nodes = n - L = N / 2 - 1
For each internal node we do 2 comparisons. Therefore, we have N - 2
comparisons. Along with the N / 2
comparisons at the leaf nodes, we have (3N / 2) - 2
total comparisons.
So, may be this is the solution srbh.kmr implied in his answer.
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
set<int> t;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
t.insert(x);
}
set<int>::iterator s,b;
s=t.begin();
b=--t.end();
cout<< *s<<" "<<*b<<endl;
enter code here
return 0;
}
// this can be done in log(n) complexity!!!