I have built a neural network with Keras. I would visualize its data by Tensorboard, therefore I have utilized:
keras.
This is how you use the TensorBoard callback:
from keras.callbacks import TensorBoard
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0,
write_graph=True, write_images=False)
# define model
model.fit(X_train, Y_train,
batch_size=batch_size,
epochs=nb_epoch,
validation_data=(X_test, Y_test),
shuffle=True,
callbacks=[tensorboard])
keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0,
write_graph=True, write_images=True)
This line creates a Callback Tensorboard object, you should capture that object and give it to the fit
function of your model.
tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True)
...
model.fit(...inputs and parameters..., callbacks=[tbCallBack])
This way you gave your callback object to the function. It will be run during the training and will output files that can be used with tensorboard.
If you want to visualize the files created during training, run in your terminal
tensorboard --logdir path_to_current_dir/Graph
Hope this helps !
If you are using google-colab simple visualization of the graph would be :
import tensorboardcolab as tb
tbc = tb.TensorBoardColab()
tensorboard = tb.TensorBoardColabCallback(tbc)
history = model.fit(x_train,# Features
y_train, # Target vector
batch_size=batch_size, # Number of observations per batch
epochs=epochs, # Number of epochs
callbacks=[early_stopping, tensorboard], # Early stopping
verbose=1, # Print description after each epoch
validation_split=0.2, #used for validation set every each epoch
validation_data=(x_test, y_test)) # Test data-set to evaluate the model in the end of training
You should check out Losswise (https://losswise.com), it has a plugin for Keras that's easier to use than Tensorboard and has some nice extra features. With Losswise you'd just use from losswise.libs import LosswiseKerasCallback
and then callback = LosswiseKerasCallback(tag='my fancy convnet 1')
and you're good to go (see https://docs.losswise.com/#keras-plugin).