I\'m looking for an algorithm, or at least theory of operation on how you would find similar text in two or more different strings...
Much like the question posed he
You might want to look into the algorithms used by biologists to compare DNA sequences, since they have to cope with many of the same things (chunks may be missing, or have been inserted, or just moved to a different position in the string.
The Smith-Waterman algorithm would be one example that'd probably work fairly well, although it might be too slow for your uses. Might give you a starting point, though.
Possible approach:
Construct a Dictionary with a string key of "word1|word2" for all combinations of words in the reference string. A single combination may happen multiple times, so the value of the Dictionary should be a list of numbers, each representing the distance between the words in the reference string.
When you do this, there will be duplication here: for every "word1|word2" dictionary entry, there will be a "word2|word1" entry with the same list of distance values, but negated.
For each combination of words in the comparison string (words 1 and 2, words 1 and 3, words 2 and 3, etc.), check the two keys (word1|word2 and word2|word1) in the reference string and find the closest value to the distance in the current string. Add the absolute value of the difference between the current distance and the closest distance to a counter.
If the closest reference distance between the words is in the opposite direction (word2|word1) as the comparison string, you may want to weight it smaller than if the closest value was in the same direction in both strings.
When you are finished, divide the sum by the square of the number of words in the comparison string.
This should provide some decimal value representing how closely each word/phrase matches some word/phrase in the original string.
Of course, if the original string is longer, it won't account for that, so it may be necessary to compute this both directions (using one as the reference, then the other) and average them.
I have absolutely no code for this, and I probably just re-invented a very crude wheel. YMMV.
One way (although this is perhaps better suited a spellcheck-type algorithm) is the "edit distance", ie., calculate how many edits it takes to transform one string to another. A common technique is found here:
http://en.wikipedia.org/wiki/Levenshtein_distance